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Abstract

Large language models (LLMs) present an intriguing avenue of exploration in
the domain of formal theorem proving. Nonetheless, the full utilization of these
models, particularly in terms of demonstration formatting and organization, remains
an underexplored area. In an endeavor to enhance the efficacy of LLMs, we
introduce a subgoal-based demonstration learning framework, consisting of two
primary elements: Firstly, drawing upon the insights of subgoal learning from
the domains of reinforcement learning and robotics, we propose the construction
of distinct subgoals for each demonstration example and refine these subgoals in
accordance with the pertinent theories of subgoal learning. Secondly, we build
upon recent advances in diffusion models to predict the optimal organization,
simultaneously addressing two intricate issues that persist within the domain of
demonstration organization: subset selection and order determination. Through
the integration of subgoal-based learning methodologies, we have successfully
increased the prevailing proof accuracy from 38.9% to 44.3% on the miniF2F
benchmark. Furthermore, the adoption of diffusion models for demonstration
organization can lead to an additional enhancement in accuracy to 45.5%, or a
5× improvement in sampling efficiency compared with the long-standing state-
of-the-art method. Our code is available at https://github.com/HKUNLP/
subgoal-theorem-prover.

1 Introduction

Mathematical theorem proving constitutes a significant milestone in the pursuit of artificial intelli-
gence. Recently, machine learning methodologies have spurred advancements in both formal and
informal theorem proving domains [36, 22]. Our study falls into the former category. In contrast
to informal theorem proving, formal methods have the advantage of leveraging interactive proof
assistants [33] to automatically validate proofs generated by models, delegating the verification
task to computational systems rather than human intervention. This significantly reduces the costs
associated with proof checking, and has been applied in software verification [20] and research-level
mathematics [5].

Recently, advances in large language models (LLMs) shed new light on the domain of formal theorem
proving. The complexity of automated theorem proving comes from the necessity of searching
through a vast space of possible logical statements and proof methods, in order to determine the
truth-value of a given theorem. LLMs reduce the difficulty of the searching problem by factorizing
the formal proof automation task into two in-context learning (§5.2) problems [46, 15, 8]. Given
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Statement
Suppose n is a positive natural number 
such that 𝑛! + 2 − 3 ∗ 𝑛 is a prime 
number. Show that n must be equal to 
3.

Informal Proof
Factoring, we get 𝑛! − 3𝑛 +=
𝑛 − 2 𝑛 − 1 .

Either 𝑛 − 1 or 𝑛 − 2 is odd, and the 
other is even. Their product must 
yield an even number. The only 
prime that is even is 2, which is when 
𝑛 is 3 or 0. Since 0 is not a positive 
number, the answer 3.

Subgoal- based Proof

Step 1: Show that n > 2.

Step 2: Assume n is not greater than 2.

Step 3: Deduce that n = 1 or n = 2.

Step 4: Show that this leads to a contradiction with 
the prime assumption.

Step 5: Use the inequality n > 2 to find the 
expression for the given polynomial.

Step 6: Show that the polynomial is prime.

Step 7: Use the prime_product lemma to deduce 
that either n - 1 = 1 or n - 2 = 1.

Step 8: Use the inequality n > 2 to show that n = 3.

(a) Subgoal-based Proof

Statement

Statement

Statement

Bernoulli
Noise

Optimal
Subset & Order

Reverse 
Process

Forward 
Process

(b) Demonstration Reorganization

Figure 1: Left: An instance of informal proof and subgoal-based proof. Right: Employing diffusion
models to identify a more effective subset of demonstration examples, as well as the optimal order
for these examples.

a mathematical statement, an LLM first generates its informal proof as a draft. It then generates a
formal sketch based on this draft, which is ready for an off-the-shelf prover to verify its correctness
automatically.1 In both of these steps, the quality of the demonstrative in-examples either written by
humans or generated by machines is the key to the performance of the system.

In this paper, we seek to improve the efficacy of LLMs in formal theorem proving by delving deeper
into the format and the organization of these demonstrative in-context examples. We present a
subgoal-based demonstration learning framework, comprising two main components. First, we
restructure an informal proof into a subgoal-based proof (Figure 1(a)), drawing upon the insights of
subgoal learning from reinforcement learning and robotics, where studies show that breaking down
complex tasks into smaller yet more uniformed subgoals enhances the learning efficiency of the
agents[7, 49]. To construct subgoal-based proofs that can be easily processed and handled by LLMs,
we start with human-written informal proofs and then iteratively refine them through interaction
with ChatGPT [43], guided by the subgoal learning theory (§2.1). Second, a recent study [47]
points out that the selection and the ordering of the in-context examples have a significant impact on
performance. The lengthy formal sketches in automatic theorem proving intensifies this impact, as
we can only present very few cases of demonstrations. In response to that, we train a diffusion model
to organize the demonstrative in-examples for the translation process from subgoal-based proof to its
corresponding formal sketch of each instance (§2.2). This approach identifies a more effective subset
of demonstration examples as well as the most beneficial order of these examples (Figure 1(b)).

The proposed method significantly outperforms competing approaches in formal theorem proving
tasks, achieving a pass rate of 45.5% on miniF2F dataset [52], a 6.6% absolute and 17.0% relative
improvement over the previous state-of-the-art system [15]. Furthermore, the adoption of diffusion
models for demonstration organization can lead to a significant improvement in sampling efficiency,
reaching previous state-of-the-art (38.5%) on miniF2F with only 20 (compared to 100) calls to the
LLM.

2 Subgoal-based Demonstration Learning

Given a theorem statement x, the goal of proof synthesis is to generate a formal sketch y which
can be verified by an off-the-shelf automated theorem prover (e.g., Sledgehammer) [15]. In this
section, we propose the subgoal-based demonstration learning framework which consists of two key
components, subgoal-based proof (§2.1) and demonstration reorganization (§2.2). The subgoal-based
proof replaces the informal proof, breaking down a complex problem into smaller subgoals that offer
more fine-grained and uniform guidance to the LLMs. The demonstration reorganization takes place
in the stage of generating the formal sketch based on the subgoal-based proof. This procedure is
non-trivial. Given the limited context length of the LLMs, selecting relevant yet diverse demonstration
examples has a significant impact on the final pass rate of these formal sketches. We denote the set

1In practice, the informal proof often serves as inline comments in the formal sketch to better guide the
generation procedure.
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of all N demonstration examples by E = {E1,E2,⋯,EN}. Each of them contains a mathematical
statement, an informal proof (or a subgoal-based proof ), and a formal sketch. In the remainder of
this section, we first describe the iterative refinement process that produces the subgoal-based proofs
given the informal proof, guided by the principles in subgoal learning theory [49]. We then explain
our solution to the demonstration reorganization. Starting from collecting arrangements that have
yielded successful proofs, we use these as training data for a diffusion model, which progressively
determines the most favorable reorganization during inference.

2.1 Subgoal-based Proof

The significance of LLMs to formal theorem proving is that they grant us the ability to leverage
informal proofs to guide formal theorem proving, which otherwise has to be based on expensive
heuristics-based brute-force search. Despite considerable progress [22, 29], this approach suffers
from the flawed informal proofs generated by the LLMs [15]. We propose to use subgoal-based
proofs to replace the informal proofs, where the subgoals are strictly aligned with the states in the
automatic provers. Following Zhang et al. [49], we seek to obtain a valid sequence of subgoals which
satisfies the condition that each subgoal in this sequence should be reachable from both the initial
state (i.e., the statement) and the final state (i.e., the passing state of the proof). These valid sequences
integrate the guidance from the LLMs better with the search space of the automatic theorem provers,
thereby leveraging the ability of the LLMs to the maximum extent. However, it is non-trivial to get
these valid subgoal proofs as human-written subgoals often fall short of the above constraints. To
address this problem, we iteratively refine the subgoal proof, in the spirit of self-play in reinforcement
learning [39], making calls to both the LLM and the off-the-shelf automated theorem prover.

Subgoal Refinement. We start with manually written subgoal-based proofs, and denote these as
the initial seed set {E(0)i }

N
i=1. This set contains subgoal-based proofs formed on the informal proofs

and the statement, yet not guaranteed to be a valid sequence. We denote the sequence of subgoals
in an instance as (s0, s1, s2,⋯, s∆, s∆+1), where ∆ is the total number of subgoals and s0 and s∆+1
are two special subgoals that align with the initial and final states of the automatic prover. During
the k-th iteration, we randomly select a subset of instances from the previous iteration {E(k−1)i }Ni=1
as the in-context demonstration for the LLM to generate subgoals for a given instance. According
to the definition, si is considered to be a valid subgoal if and only if it can be reached both from s0
and s∆+1. Therefore, for each of the subgoal, we recursively call the proof assistant to verify the
validness of the most recently developed subgoal and only after ∆ recursions we can obtain the new
valid sequence of subgoals and adds that into the next iteration as E(k)i . This process improves the
consistency of the derived subgoals in style, thus making it easier for the LLM to learn from in the
inference stage. We provide a detailed description of the algorithm in Appendix A.

2.2 Demonstration Reorganization

The demonstration examples can be lengthy in formal theorem proving. If we assume a maximum
context length of 3072 tokens, only 4.79 examples on average can be included. Our experiments
echo the findings by Wu et al. [47]. These instance-based demonstration examples have a significant
impact on performance. Only certain orders of carefully chosen demonstration examples lead to
successful theorem proving. Consequently, identifying the optimal subset from the pool and ordering
them into meaningful in-context demonstration examples is of great significance, which unfortunately
is an NP-complete problem. We form the demonstration reorganization problem as finding the
(Sub)hamiltonian graph where the nodes represent demonstration examples. A traverse following
the path corresponds to the selection and the ordering of the in-context examples. Building upon
the recent success of applying diffusion models in addressing NP-complete problems [10, 42], we
further formulate this problem into a diffusion process on the graph. This solution has two main
advantages. First, it addresses the example selection and ordering problem simultaneously. Second,
the inference can be performed in parallel, which greatly reduces the time of discovering the optimal
arrangement given the demonstration examples. We start from collecting successful pairs of in-
context demonstration example organization and the corresponding statement x as the training data
for the diffusion model. We randomly organize (select and order) the demonstration examples and
query the LLM to see if it can generate the proof successfully. The passing cases will be used as the
starting configuration ψ0 in the diffusion process given the statement x.
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Training. The aim of employing diffusion models is to predict the optimal organization, denoted as
ψ0, conditioning on the theorem statement x. From the standpoint of variance inference, diffusion
models adopt the following formulations to model pθ(ψ0∣x),

pθ(ψ0∣x) ∶= ∫ pθ(ψ0∶T ∣x)dψ1∶T , (1)

where ψ1,⋯,ψT serve as latent variables with the same dimensionality as ψ0. The learned reverse
process progressively denoises these latent variables in order to reconstruct ψ0. This procedure can
be formalized as follows,

pθ(ψ0∶T ∣x) = p(ψT )
T

∏
t=1

pθ(ψt−1∣ψt, x). (2)

The forward process gradually corrupts ψ0 to generate noised latent variables,

q(ψ1∶T ∣ψ0) =
T

∏
t=1

q(ψt∣ψt−1). (3)

The goal of the training process is to maximize the evidence lower bound (ELBO),

E [log pθ(ψ0∣x)] ≥ Eq [log
pθ(ψ0∶T ∣x)

qθ(ψ1∶T ∣ψ0, x)
]

= Eq[log pθ(ψ0∣ψ1, x) −∑
t>1

DKL[q(ψt−1∣ψt,ψ0)∥pθ(ψt−1∣ψt, x)]].
(4)

We employ a Graph Neural Network (GNN) for the encoding and denoising process of the graph.
Following Austin et al. [2], we adopt discrete diffusion models to model binary random variables.

Inference. During the inference stage, we obtain samples ψ ∼ pθ(ψ0∣x) and subsequently recon-
struct the order of demonstration examples from ψ. We then incorporate examples sequentially into
the LLM context, and define the output of the demonstration organization module as the sequence
of examples upon reaching the LLM length constraint. More details of the implementation of the
diffusion model, the implementation of GNN, and techniques used in the sampling process of ψ can
be found in Appendix B.

3 Experiments

3.1 Formal Environment

Interactive Theorem Provers. Interactive Theorem Provers (ITPs), such as Isabelle [32], constitute
the backbone of contemporary mathematical verification systems. They facilitate the integration of
mathematical definitions and theorems into a consistent logical framework, such as Higher-Order
Logic or Dependent Type Theory, which is operationalized by their kernels. The kernel plays a pivotal
role in the verification process, meticulously examining each theorem to ascertain its recognition by
the ITP and thereby ensuring the integrity of the system. The theorem proving process within an
ITP is characterized by the articulation of the theorem in the ITP’s programming language, followed
by an iterative simplification into more manageable objectives or subgoals. The theorem is deemed
proven once it can be distilled down to pre-established facts. The selection of Isabelle for our paper
is motivated by its intuitive interface, its compatibility with a range of logical frameworks, and its
comprehensive library of formalized mathematics.

Sledgehammer. Sledgehammer [34] serves as a powerful tool for automating reasoning within
the interactive theorem prover Isabelle. It functions by transmuting the goals encapsulated in
Isabelle/HOL’s higher-order logic into alternative logics, such as first-order logic. These transmuted
goals are then passed to off-the-shelf automated theorem provers, including E, CVC4, Z3, Vampire,
and SPASS. In the event that any of these automated theorem provers successfully derives the proof
in their respective formats, Sledgehammer undertakes the task of reconstructing the proof within the
Isabelle/HOL framework using certified provers, namely metis, meson, and smt. This reconstructed
proof, being more interpretable to humans, significantly enhances the system’s usability, thereby
contributing to the efficiency and effectiveness of (interactive) theorem proving.
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3.2 Dataset and Evaluation

Dataset. We evaluate our approach using the miniF2F dataset [52], which comprises 488 formal
mathematical problems derived from high-school competitions, expressed in three formal languages:
Lean, HOL-Light, and Isabelle. The dataset is divided into a validation and a test set, each including
244 problems. The problems within the dataset are sourced from three distinct categories: 260
problems are extracted from the MATH dataset [13], 160 problems are extracted from actual high-
school mathematical competitions (AMC, AIME, and IMO), and 68 problems are crafted to mirror
the difficulty level of the aforementioned competitions.

Evaluation. The task at hand entails the generation of formal sketches for problems in the miniF2F
dataset. The validity of a formal sketch depends on two criteria: first, the absence of “cheating”
keywords such as “sorry” and “oops” that prematurely terminate a proof prior to its completion;
second, the capacity of the interactive theorem prover Isabelle to authenticate the corresponding
formal statement with the proof. To make working with Isabelle easier, we use the Portal-to-Isabelle
API, as introduced by Jiang et al. [15]. Given the absence of a training split in the miniF2F dataset,
we leverage optimal organizations that yield successful proofs from the miniF2F-valid set to train the
diffusion model. As proposed by Lample et al. [21], we employ the cumulative pass rate as a measure
for the results obtained from performing inference using diffusion models on the miniF2F-valid
set. This involves integrating the pass rates from both the data collection stage for training and the
inference stage. When it comes to other scenarios, namely conducting inference on the miniF2F-test
or cases where the diffusion model is not employed, we simply provide the pass rate.

3.3 Baselines

We use the following baselines to test the effectiveness of our proposed methodology.

Symbolic Automated Provers. We first employ Sledgehammer, a proof automation tool that is
extensively utilized within the Isabelle environment. We adhere to the default configuration of
Sledgehammer as provided in Isabelle2021, which encompasses a 120-second timeout and a suite
of five automated theorem provers (Z3, CVC4, SPASS, Vampire, E). In alignment with Jiang et al.
[15], we employ Sledgehammer supplemented with heuristics, integrating 11 prevalent tactics (i.e.,
auto, simp, blast, fastforce, force, eval, presburger, sos, arith, linarith, auto simp: field simps) with
Sledgehammer. If all the tactics fail or take longer than 10 seconds, the system reverts to the base
Sledgehammer.

Search-based Methods. In addition to the above, we incorporate baselines that utilize Monte-Carlo
tree search [39] to discover the proof. This includes Thor [16] and another version of Thor that
employs an expert iteration on autoformalized data (i.e., Thor+expert iteration [46]). Thor combines
language models with automatic theorem provers to overcome the challenge of selecting beneficial
premises from a vast library. Thor+expert iteration enhances a neural theorem prover by training it
on theorems that have been automatically formalized.

LLM-based Method. Lastly, we incorporate a LLM-based baseline, namely, Draft, Sketch and
Prove (DSP) [15]. DSP turns informal proofs into formal sketches and leverages these formal sketches
to steer an automated prover. Notably, we employ the variant of DSP that is implemented with the
540B Minerva model [22], as this particular implementation demonstrated superior performance in
their paper.

We exclude representative methods such as HyperTree Proof Search (HTPS) [21] and GPT-f with ex-
pert iteration [37], which are implemented using Lean [6], a different interactive theorem prover. The
disparity in tactics and automation between Lean and Isabelle renders them not directly comparable
to our method.

3.4 Implementation Details

Throughout our work, we employ ChatGPT 2 as the LLM. For the creation of the formal sketch, the
temperature and max_tokens parameters of ChatGPT are set to 0 and 1024, respectively. In terms

2the gpt-3.5-turbo-0301 version
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Table 1: Pass rates on the miniF2F dataset with Isabelle. Numbers in bold denote the best performance.
Numbers with a ⋆ correspond to the cumulative pass rate [21] since the evaluated statements are part
of the training for diffusion models. See §3.2 for more details about cumulative pass rate.

valid test

Sledgehammer 9.9% 10.4%
Sledgehammer+heuristic 18.0% 20.9%
Thor 28.3% 29.9%
Thor + expert iteration 37.3% 35.2%
DSP (540B Minerva) 42.6% 38.9%

Ours 48.0%⋆ 45.5%

Table 2: Ablation results on the miniF2F dataset with Isabelle. Numbers with a ⋆ correspond to the
cumulative pass rate.

valid test

Ours 48.0%⋆ 45.5%

- subgoal & diffusion 41.8% 38.5%
- subgoal 44.3%⋆ 40.6%
- diffusion 47.5% 44.3%

of the establishment of the subgoal-based proof, we set the number of refinement iterations to be
15, with the number of demonstration examples, denoted as N , being set to 61. For demonstration
organization, we employ a randomized demonstration organization approach to generate proofs for
116 distinct statements on miniF2F-valid, which yield 137 successful proofs. We then partition the
corresponding demonstration contexts into a training set and a validation set, comprising 81 and
56 instances respectively. The training of our diffusion models is conducted with a learning rate of
5e− 4, a batch size of 16, and over a span of 50 epochs. We set the number of diffusion steps T to 80.
We employ an early stopping strategy on the validation set and report the performance averaged over
three different runs.

3.5 Main Results

The experiment results, as shown in Table 1, yield several key observations: (1) Our proposed method
achieves a pass rate of 48.0% on miniF2F-valid and 45.5% on miniF2F-test, surpassing all competing
methods. This superior performance is attributable to the subgoal-based proof coupled with usage
of diffusion models for demonstration reorganization; (2) The methods Thor and Thor + expert
iteration struggle due to the enormously large action space. This space significantly overshadows
that of games, thereby posing challenges to the comprehensive utilization of the Monte Carlo tree
search. Consequently, these methods underperform when compared to LLM-based methods; and (3)
DSP has pioneered the introduction of the informal proof, a critical step in the LLM-based formal
theorem proving task. However, human-written informal proofs do not offer optimal compatibility
with large language models. Our method, grounded in the subgoal-learning theory, is capable of
inferring subgoal-based proofs that are more amenable to large language models.

4 Analysis

4.1 Ablation Study

In our ablation study, we examine four variations of our model on the miniF2F dataset, as detailed in
Table 2. The models include our full method (Ours), and three variants with either the subgoal-based
proof, demonstration reorganization, or both components removed.

Our full model achieves the highest performance on the test set. This underscores the importance of
both subgoal-based proof and demonstration reorganization. The model without both components
showed the lowest performance, further emphasizing the significance of these components. The

6



20 40 60 80 100
# LLM Calls Per Problem

80

85

90

95

100

105

110

# 
Pr

ob
le

m
s S

ol
ve

d

Problems Solved on the miniF2F-test
subgoal+diff
informal+diff
subgoal
informal

(a) Subgoal-based Proof

20 30 40 50 60 70 80 90 100
# LLM Calls Per Problem

85

90

95

100

105

110

# 
Pr

ob
le

m
s S

ol
ve

d

Problems Solved on the miniF2F-test
diffusion
gnn
topk

(b) Demonstration Reorganization

Figure 2: Number of problems solved on miniF2F-test against the number of LLM calls per problem.
Left: a comparative assessment between the informal proof and subgoal-based proof under two
distinct conditions: presence and absence of the diffusion model. Right: a comparative exploration
of different in-context learning methods.

models missing either the subgoal-based proof or reorganization components also show decreased
performance, indicating the substantial role of each component.

4.2 On the Effect of Subgoal-based Proof

We further use four different variants to explore the impact of subgoal-based proof. Figure 2(a)
displays the results of this experiment, where “informal” denotes the utilization of informal proofs
instead of subgoal-based proof, and “diff” indicates the integration of demonstration reorganization.
The results indicate a significant difference between the approaches that incorporate subgoal-based
proof (“subgoal” and “subgoal+diff”) and those that do not (“informal” and “informal+diff”). This
trend remains consistent across all LLM call numbers, suggesting a noteworthy positive effect of
subgoal-based proof on the overall performance of our method.

4.3 On the Effect of Demonstration Reorganization

To further investigate the effect of a diffusion model for demonstration reorganization, we draw a
comparative analysis between its performance and two alternative in-context learning methodologies:
the Graph Neural Network (GNN) and the Top-K. The GNN is congruent with a modified version
of our proposed model when the inference diffusion step is set to 1, while the efficacy of the Top-K
methodology has been extensively substantiated in the literature [25]. Figure 2(b) presents the
empirical results, manifesting that the diffusion model’s performance increment diminishes as the
number of LLM calls escalates to 100. This phenomenon stems from the fact that the module is
trained on data collated from successful proofs via randomized organization sampling. Consequently,
it may encounter difficulties in discerning the optimal organization for data that deviates significantly
from its training dataset. Nevertheless, this limitation does not overshadow the potential of diffusion
models to economize the number of LLM calls. Notably, with demonstration reorganization, our
method exhibits an impressive capability of successfully deriving proofs for 94 problems (equivalently,
a pass rate of 38.5%), with a mere 20 LLM calls. Remarkably, this result is comparable with that of
the DSP method, which necessitates 5× the number of LLM calls.

4.4 Case Study

To better comprehend the efficacy of our proposed method, we present a formal sketch of a problem
that remains unproven by earlier state-of-the-art methods. As demonstrated in Figure 3, it is apparent
that our strategy successfully decomposes the complex objective into three manageable subgoals,
each solvable by the LLM. We provide additional comprehensive examples in Appendix C.
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Statement: Suppose n is a natural number such that n leaves a remainder of 3 when divided by 7. Show that (2n+1) leaves a 
remainder of 0 when divided by 7.

Subgoal-based Proof:
Step 1: Express n as 7𝑘 + 3 for some k ∈ ℕ
Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.
Step 3: Show that the resulting expression is divisible by 7.

Formal Sketch:
mathd_numbertheory_370:

n :: nat
h0 : 

-
(* Step 1: Express n as 7𝑘 + 3 for some k ∈ ℕ. *) 

div_mult_mod_eq[of "n" "7"] 

h0 
c0: 

(* Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify. *)

c0 

c1: 
(* Step 3: Show that the resulting expression is divisible by 7.*)

c1 

Figure 3: A formal sketch generated by our proposed method.

5 Related Work

5.1 Machine Learning for Formal Theorem Proving

Machine learning-based formal theorem proving systems primarily fall into two categories: those
focusing on proof search strategies and premise selection, and those harnessing Large Language
Models (LLMs) for autoformalization and proof generation. The first category, represented by works
like Expert Iteration [37] and PACT [11], devise novel learning strategies to enhance proof search,
extracting self-supervised data from kernel-level proof terms. Systems such as HyperTree Proof
Search (HTPS)[21] and Thor[16] integrate language models with automated theorem provers, while
Magnushammer [27] presents a transformer-based approach for premise selection. While these
techniques have proven effective, they struggle with increasing computational costs as theorems
grow more complex. The second category exploits the potential of LLMs in the formalization of
mathematical proofs. Both Wu et al. [46] and Jiang et al. [15] demonstrate that LLMs can convert
mathematical problems into formal specifications, with the latter utilizing these translations to guide
an automated prover. Baldur [8] extends this approach by generating entire proofs at once and
introducing a proof repair model to enhance proving power. However, these approaches have yet
to fully leverage the power of LLMs due to a lack of emphasis on the format and organization
of demonstration examples. Our work aims to address this gap by introducing a subgoal-based
demonstration learning framework that refines the use of LLMs in formal theorem proving.

5.2 In-context Learning

In the field of In-Context Learning (ICL), research primarily focuses on two main areas: (1) the
selection of in-context examples, and (2) the arrangement of these examples in the learning context.
With regard to the first area, Liu et al. [25] suggest a retrieval-based prompt selection method, offering
a thoughtful alternative to random example selection. This method aims to find examples that are
semantically similar to a test sample to form related prompts. Building on this idea, Rubin et al. [38]
propose an effective retrieval process for prompts, using a pre-trained language model. Sorensen et al.
[40] further the exploration by introducing a new way to select prompt templates that don’t need
labeled examples or direct access to the model. Instead, they choose the template that maximizes the
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mutual information between the input and the corresponding model output. Su et al. [41] present a
two-step framework that is efficient in annotation. It first selects a set of examples from unlabeled
data, and then retrieves task examples from the annotated set during testing. Lastly, Agrawal et al. [1]
focus on creating strategies specifically for machine translation tasks, emphasizing the importance of
the quality and domain of in-context examples, and warning against the negative effects of unrelated
noisy examples. Works in the second area examine the significance of the order in which prompts
are presented. Zhao et al. [51] point out the instability in few-shot learning caused by the order of
training examples and suggest a calibration method to tackle this. Lu et al. [26] delve deeper into
this analysis, demonstrating the sensitivity of prompt order in few-shot learning situations. Even
though previous efforts have made remarkable progress in either choosing or sequencing in-context
examples, our research sets a new precedent by combining both elements. In this paper, we step out
of these isolated areas of concentration, looking into an approach based on diffusion models that
effectively tackles both the challenges of selection and ordering at the same time.

5.3 Subgoal Learning

Subgoal learning is a pivotal concept in reinforcement learning. It can enable AI systems to solve
complex, long-horizon tasks more effectively. Crucially, theoretical analyses have shed light on key
concepts including the computational benefits of rewarding subgoals [48], the structure of Markov
decision processes beneficial for hierarchical reinforcement learning [45], the complexity of optimal
option selection for planning [17], and the integration of temporal abstraction into RL [9]. Empirical
analyses in this field mainly focus on subgoal exploration, subgoal generation for planning, and
curriculum learning for subgoals. Subgoal exploration aims to find the optimal or efficient exploration
of subgoals, employing a variety of strategies. These include minimizing cover time [18], learning
dynamical distances [12], maximizing entropy [35], and utilizing asymmetric self-play [30]. Subgoal
planning research encompasses diverse algorithms for improved decision-making. For example,
SoRB [7] uses RL to build a graph for subgoal sequences, DC-MCTS [31] applies learned sub-
goal proposals to partition tasks, PAIR [24] combines online RL and offline supervised learning,
and Moro et al. [28] extend MCTS with Hindsight Experience Replay for goal-oriented planning.
The research centered on curriculum learning proposes various techniques to create a learning
curriculum that gradually intensifies subgoal complexity, thereby optimizing learning efficiency and
effectiveness [50, 49]. While there have been preliminary efforts to apply similar principles in the
construction of prompts for LLMs [19], the deployment of subgoal learning theories to manage
intricate tasks, such as formal theorem proving, remains largely unexplored. Our work pioneers the
use of subgoal learning in this domain, with a focus on format and organization.

6 Conclusion & Discussion

In this paper, we have developed a subgoal-based demonstration learning framework that significantly
enhances LLMs’ efficacy in formal theorem proving. Our approach combines insights from subgoal
learning and diffusion models, effectively addressing the challenges of demonstration formatting and
organization. As a result, we achieve a 17.0% relative improvement in proof pass rate on the miniF2F
benchmark and a 5× improvement in sampling efficiency. Our work lays the foundation for future
endeavors in leveraging AI for generating, validating, and contributing novel insights to automated
theorem proving.

Despite the significant advancements achieved through our subgoal-based demonstration learning
framework, several limitations of our work exist. Firstly, the process of transforming informal proofs
into subgoal-based proofs is an iterative procedure involving interaction with ChatGPT, which may
introduce noise and inconsistencies. As our methodology relies on this transformation process, errors
introduced at this stage may propagate and affect the final result. Secondly, while the diffusion models
we adopted were effective in organizing the demonstrative in-examples, they are computationally
demanding. This can pose challenges for real-time or resource-constrained applications. Lastly, we
only evaluated our framework on the miniF2F dataset. We are expecting to see its performance on
other benchmarks and more complex, undergraduate-level mathematical problems [3].
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A More Details about Subogal-based Proof

We provide a detailed description on the subgoal refinement method (see §2.1) through Algorithm 1
and Algorithm 2. In the k-th iteration, we construct demonstration examples {E(k)i }

N
i=1 using

improved subgoal-based proofs. To construct E(k)i , we first extract the statement and formal sketch
from E

(k−1)
i , then use an LLM to generate subgoals. Afterward, a Refine module is called to confirm

the validity of the created subgoals and adjust any subgoals identified as infeasible.

We present an example to elucidate this process further (see Figures 4 to 12).3 As shown in Figure 4,
the LLM creates two subgoals for the theorem amc12a_2003_p4, leading to {s0, s1, s2, s3}. Refining
these subgoals involves calling verify_and_correct(s0, s1) to improve the subgoal s1. This is
depicted in Figures 5 to 12. We first use the LLM to reconstruct the subgoal related to the first
step, but this attempt fails (Figure 5). Then we break down the subgoal s1 into three more detailed
subgoals (Figure 6), each of which is then verified using the same LLM (Figures 7 to 9). Due
to the unsuccessful reconstruction of the second subgoal (Figure 8), it is further broken down
into two more specific subgoals (Figure 10). The last two subgoals pass the verification process
successfully (Figures 11 and 12). Finally, the output of verify_and_correct(s0, s1), namely S0→1,
is defined as the set that includes the steps from 1 to 4 shown in Figure 12.

Algorithm 1 Iterative Subgoal Refinement
Requires: EXTRACT extraction of statement and formal sketch

COMPOSE composing of a statement, formal sketch
and subgoals to form a demonstration example

INITIALIZE_SUBGOALS generate subgoals with a LLM

function ITERATIVE_REFINEMENT({E(0)1 ,E
(0)
2 ,⋯,E(0)N })

for k in 1,2, . . . ,K do
for i in 1,2, . . . ,N do

x, y ← EXTRACT(E(k−1)i )
s0, s1,⋯, s∆, s∆+1 ← INITIALIZE_SUBGOALS(x, y,E(k−1))
S0→(∆+1) ← REFINE((s0, s∆+1,{s1, s2,⋯, s∆}))
E
(k)
i ← COMPOSE(x, y, S0→(∆+1))

end for
end for
return {E(K)1 ,E

(K)
2 ,⋯,E(K)N }

end function

Algorithm 2 Refinement Algorithm
Requires: VERIFY_AND_CORRECT verify the validness of the subgoals and correct them

if necessary
function REFINE(si, sj+1, {si+1,⋯, sj})

if i = j then return VERIFY_AND_CORRECT(si, si+1)
end if
Si→i+1 ← REFINE(si, si+1,{})
Si+1→j+1 ← REFINE(si+1, sj+1,{si+2,⋯, sj})
return Si→i+1 ∪ Si+1→j+1

end function

3To simplify the illustration, we leave out redundant demonstration examples.
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Your task is to transform a formal proof, written in a style suitable for a theorem-proving system, into a more explanatory and narrative 
style, suitable for humans. The task involves adding explanatory comments that break down the formal proof into understandable steps, 
providing context and insight into the underlying logical structure and reasoning.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
define x y where "x=ln a" and "y=ln b"
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

"
− "
!
. *)

define x y where "x=ln a" and "y=ln b"
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 2: Using the inequality ( "
! −

!
")
#≥ 0, it is shown that the simplified equation 2 − !

" −
"
! is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 4: Illustration of the Initialize_subgoals function as denoted in Algorithm 1. ChatGPT is
leveraged to generate the subgoal-based proof with respect to a formal sketch.
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

(* Step 2: Using the inequality ( "
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

define x y where "x=ln a" and "y=ln b"
have "x > 0" and "y > 0"

using assms by (simp_all add: ln_gt_zero)
have "?L = 2 - y / x - x / y"

using assms x_def y_def by (simp add: add_divide_distrib diff_divide_distrib ln_div)

(* Step 2: Using the inequality ( "
! −

!
")
#≥ 0, it is shown that the simplified equation 2 − !

" −
"
! is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 5: An instance of the “verify” component within the Verify_and_correct function in Algo-
rithm 2. ChatGPT encounters a failure in reconstructing the proof associated with step 1, thereby
deeming it an unsuitable subgoal.
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The Isabelle Proof Assistant was unable to verify Step 1. To resolve this, consider providing more detailed information or clarity to 
enhance the explanation for this particular step.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

define x y where "x=ln a" and "y=ln b"
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 2: Using the inequality ( "
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

"$!
"
+ !$"

!
. *)   

have "y>0" 
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − !
" −

"
!. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( "
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 6: An instance of the “correct” component within the Verify_and_correct function in Algo-
rithm 2. ChatGPT works on the decomposition of the original subgoal (i.e., step 1 in the input) into a
series of more granular subgoals (i.e., step 1 - 3 in the output).
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)

(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 
!"#
!
+ #"!

#
. *)   

have "y>0" 
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
!
+ #"!

#
. *)   

have "y>0" 
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 7: An instance of the “verify” component within the Verify_and_correct function in Algo-
rithm 2. ChatGPT successfully reconstructs the proof associated with step 1, thus validating it as a
viable subgoal.
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
!
+ #"!

#
. *)   

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
! + #"!

# . *)   
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge> y" 

using \<open>b\<le>a\<close> unfolding x_def y_def using ln_mono sledgehammer
hence "(x - y)/x + (y - x)/y = 2 - y/x - x/y"

using \<open>x>0\<close> \<open>y>0\<close> by (simp add: diff_divide_distrib)
(* Step 3: Simplify the expression to 2 − #

! −
!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 8: An instance of the “verify” component within the Verify_and_correct function in Algo-
rithm 2. ChatGPT encounters a failure in reconstructing the proof associated with step 2, thereby
deeming it an unsuitable subgoal.
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
!
+ #"!

#
. *)   

have "y>0" 
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
!
+ #"!

#
. *)   

have "y>0" 
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 9: An instance of the “verify” component within the Verify_and_correct function in Algo-
rithm 2. ChatGPT successfully reconstructs the proof associated with step 3, thus validating it as a
viable subgoal.
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The Isabelle Proof Assistant was unable to verify Step 2. To resolve this, consider providing more detailed information or clarity to 
enhance the explanation for this particular step.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding 

!"#
! + #"!

# . *)   
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

# . *)
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 10: An instance of the “correct” component within the Verify_and_correct function in
Algorithm 2. ChatGPT works on the decomposition of the original subgoal (specifically, step 2 in the
input) into a series of more granular subgoals (specifically, step 2 - 3 in the output).
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)

(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!
# . *)

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#

!
+ #"!

#
. *)

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality ( !
# −

#
!)
$≥ 0, it is shown that the simplified equation 2 − #

! −
!
# is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 11: An instance of the “verify” component within the Verify_and_correct function in
Algorithm 2. ChatGPT successfully reconstructs the proof associated with step 2, thus validating it as
a viable subgoal.
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Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of 
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

# . *)

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0" 

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

# . *)
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality ( !
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis 
sledgehammer

qed
finally show ?thesis.

qed

Figure 12: An instance of the “verify” component within the Verify_and_correct function in
Algorithm 2. ChatGPT successfully reconstructs the proof associated with step 3, thus validating it as
a viable subgoal.
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B More Details about Demonstration Reorganization

B.1 Parameterization

In alignment with Austin et al. [2], we adopt discrete diffusion models to model binary random
variables. Explicitly, the forward process is given by:

q(ψt∣ψt−1) = Cat (ψt;p = δ(ψt−1)Qt) , (5)

where δ(ψ) symbolizes the one-hot encoding of ψ,Qt = [
(1 − βt) βt

βt (1 − βt)] denotes the transition

matrix, βt corresponds to the corruption ratio and satisfies that∏T
t=1(1 − βt) ≈ 0. The marginal at

step t and the posterior at step t − 1 can be articulated as:

q(ψt∣ψ0) = Cat (ψt;p = δ(ψ0)Qt) ,

q(ψt−1∣ψt,ψ0) = Cat(ψt−1;p =
δ(ψt)Q

⊺
t ⊙ δ(ψ0)Qt−1

δ(ψ0)Qtδ(ψt)⊺
) ,

(6)

where Qt = Q1Q2 . . .Qt. In consonance with Austin et al. [2], we employ a denoising neural
network which is tasked with the prediction of p(ψ0∣ψt), thereby enabling the parameterization of
the reverse process:

pθ(ψt−1∣ψt, x)∝∑
ψ

q(ψt−1∣ψt,ψ0)pθ(ψ0∣ψt, x). (7)

B.2 Implementation of GNN

Our work employs a modified version of GNN, a model that exhibits anisotropic characteristics and
is enhanced by edge gating methodologies [4, 42]. We define t as sinusoidal representations [44]
associated with the denoising timestep t. Consider hℓ

i and eℓij as the features of node i and edge ij at
a specific layer ℓ, respectively. During the transition between layers, these features disseminate via an
anisotropic message propagation paradigm as follows:

êℓ+1ij = P
ℓeℓij +Q

ℓhℓ
i +R

ℓhℓ
j ,

eℓ+1ij = eℓij +MLPe(BN(êℓ+1ij )) +MLPt(t),

hℓ+1
i = hℓ

i +ReLU(BN(U
ℓhℓ

i + SUMj∈Ni(σ(ê
ℓ+1
ij )⊙V

ℓhℓ
j))),

(8)

where P ℓ,Qℓ,Rℓ,U ℓ,V ℓ ∈ Rd×d denote layer-specific learnable parameters with d denoting the
dimension of hidden state. BN signifies the Batch Normalization operation [14], while SUM repre-
sents sum pooling. ⊙ designates the Hadamard product, and Ni encapsulates the set of neighboring
nodes of node i. Lastly, a two-layer multi-layer perceptron is denoted by MLP(⋅).

In our experiments, we define h0
i =W [Ada(x);Ada(E(K)i )] where W ∈ Rd×3072 is a learnable

parameter. Ada(x),Ada(E(K)i ) ∈ R1536×1 denote the ada embeddings 4 of the statement x and the
i-th demonstration example, respectively. The operator [⋅; ⋅] denotes the concatenation operation
between two vectors. e0ij are initialized as sinusoidal features of the edges.

B.3 Sampling Process

A straightforward strategy for creating a demonstration organization is by directly sampling ψ ∼
pθ(ψ0∣x). However, this strategy introduces two key challenges: (1) A cycle in ψ might be
present, indicating that at least one demonstration example is selected multiple times; (2) ψ could
include multiple separate sub-graphs, making it difficult to define the relative position between two
demonstration examples from two different sub-graphs. Taking a cue from treating diffusion models
as discriminative approaches [23], we start by randomly creating 200 potential solutions. Using
the diffusion model’s ability to provide conditional density estimates, we rate these 200 potential
solutions and select the one with the highest score to build the final demonstration organization. We
then reconstruct the sequence of demonstration examples from ψ, adding examples one by one into
the LLM context until we hit the length limit of the LLM.

4https://platform.openai.com/docs/guides/embeddings
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B.4 Hyperparameters and Hardware Setup

In the course of our experiment, we employ a 3-layer Anisotropic Graph Neural Network with a
hidden state dimensionality set to 256. We sweep the learning rate from [1e−4,2e−4,5e−4,7e−4]
and sweep batch size from [4,8,16,32]. The processes of training and inference for the diffusion
models are conducted on a NVIDIA RTX 3090 GPU.

C Additional Examples

We provide additional cases in Figure 13 to Figure 15. In Figure 13, our method proficiently identifies
viable subgoals, successfully guiding a clear path to the proof. This is accomplished by leveraging
pertinent demonstration examples which utilize operations of division and modulus. Akin to the
previous case, in Figure 14, our method accurately predicts potential subgoals. This is realized by
capitalizing on demonstration examples that employ the mathematical operations of squaring and
square root. Finally, in Figure 15, our method demonstrates its capacity to consistently discern viable
subgoals, thereby achieving a seamless completion of the proof structure.
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As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Let 𝑛 be an integer and 𝑝 be a prime number. Show that 𝑝 divides 𝑛 if and only if 𝑛! is congruent to 0 modulo 𝑝.

Proof:
theorem numbertheory_prmdvsneqnsqmodpeq0:

fixes n :: int
and p :: nat

assumes "prime p"
shows "p dvd n \<longleftrightarrow> (n^2) mod p = 0"
(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛! is congruent to 0 modulo 𝑝.

Step 2: Assume that 𝑛! is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)
proof -

(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛! is congruent to 0 modulo 𝑝.*)
assume "p dvd n"
then show "(n^2) mod p = 0" sledgehammer
(* Step 2: Assume that 𝑛! is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)    
next assume "(n^2) mod p = 0"
then show "p dvd n" sledgehammer

qed

Problem:
Prove that for any natural number 𝑛, 3 divides 𝑛" + 2𝑛.

Proof:
theorem induction_divisibility_3divnto3m2n:

fixes n::nat
shows "3 dvd n^3 + 2 * n"
(* Step 1: Prove the base case 𝑛 = 0.

Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.
Step 3: Expand (𝑛 + 1)"+2(𝑛 + 1) and simplify.
Step 4: Use the assumption that 3 divides 𝑛" + 2𝑛 to show that 3 divides 3𝑛! + 3𝑛 + 3.
Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)"+2(𝑛 + 1) .
Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)

proof (induct n)
(* Step 1: Prove the base case 𝑛 = 0.*)
case 0

then show ?case sledgehammer
(* Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.*)
next case (Suc n)
have ?case when "n=0"

using that sledgehammer
moreover have ?case when "n>0"
proof -
(* Step 3: Expand (𝑛 + 1)"+2(𝑛 + 1) and simplify.*)

have "(n + 1)^3 + 2 * (n + 1) = (n^3+3*n^2+3*n+1) + (2*n+2)"
unfolding power3_eq_cube power2_eq_square sledgehammer

also have "... = n^3+2*n + 3*n^2+3*n+3" sledgehammer
finally have "(n+1)^3+2*(n+1) = n^3+2*n + 3*n^2+3*n+3".

(* Step 4: Use the assumption that 3 divides 𝑛" + 2𝑛 to show that 3 divides 3𝑛! + 3𝑛 + 3.*)
moreover have "3 dvd n^3+2*n" using Suc(1) sledgehammer
moreover have "3 dvd 3*n^2+3*n+3" sledgehammer

(* Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)"+2(𝑛 + 1) .*)
ultimately have "3 dvd (n+1)^3+2*(n+1)" sledgehammer

(* Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)
then show ?thesis sledgehammer

qed
ultimately show ?case sledgehammer

qed

Problem:
Suppose 𝑛 is a natural number such that 𝑛 leaves a remainder of 3 when divided by 7. Show that (2𝑛 + 1) leaves a remainder of 0 when divided by 7.

Proof:
theorem mathd_numbertheory_370:

fixes n :: nat
assumes h0 : "n mod 7 = (3::nat)"
shows "(2*n+1) mod 7 = (0::nat)"

(* Step 1: Express 𝑛 as 7𝑘 + 3 for some 𝑘𝜖ℕ$.
Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.
Step 3: Show that the resulting expression is divisible by 7. *)

proof -
(* Step 1: Express 𝑛 as 7𝑘 + 3 for some 𝑘𝜖ℕ$.*)
have "n = 7 * (n div 7) + (n mod 7)" using div_mult_mod_eq[of "n" "7"] sledgehammer
also have "... = 7 * (n div 7) + 3" using h0 sledgehammer
finally have c0: "n = 7 * (n div 7) + 3".
(* Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.*)
have "2*n+1 = 2*(7*(n div 7) + 3) + 1" using c0  sledgehammer
also have "... = 14*(n div 7) + 7" sledgehammer
also have "... = 7*(2*(n div 7) + 1)" sledgehammer
finally have c1: "2*n+1 = 7*(2*(n div 7) + 1)".
(* Step 3: Show that the resulting expression is divisible by 7. *)
show "(2*n+1) mod 7 = 0" using c1 sledgehammer

qed

Prompt

ChatGPT Output

Figure 13: A case from miniF2F-valid. Our method identifies viable subgoals and leverages demon-
stration examples with division and modulus operations to complete the proof.
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As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Suppose that 𝑥 is a positive real number. Show that 2 − 2 ≥ 2 − 𝑥 − !

"#
.

Proof:
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x:

fixes x :: real
assumes "x > 0"
shows "2 - sqrt 2 \<ge> 2 - x - 1/ (2 * x)"
(* Step 1: Show that 2 ≤ 𝑥 + !

"#
.

Step 2: Rearrange the inequality to get 2𝑥" + 1 − 2𝑥 2 ≥ 0.
Step 3: Factor the expression to get ( 2𝑥 − 1)"≥ 0.
Step 4: Conclude that the inequality is true. *)

proof -
(* Step 1: Show that 2 ≤ 𝑥 + !

"#
.*)

have c0: "2 * x > 0" using assms sledgehammer
have "sqrt 2 \<le> x + 1 / (2 * x)"
proof -

define y where "y = sqrt 2"
have c1: "2 = y * y"
proof -

have "2 = (sqrt 2) * (sqrt 2)" sledgehammer
then have "... = y * y" using \<open>y = sqrt 2\<close> sledgehammer
then show ?thesis sledgehammer

qed
have "(2 * x) * x + 1 - (2 * x) * (sqrt 2) = (y * y * x * x) + 1 - (2 * x) * y" using c1 y_def sledgehammer
also have "... = (y*x) * (y*x) - 2 * (y*x) + 1" sledgehammer
also have "... = (y*x - 1) * (y*x - 1)" sledgehammer
also have "... \<ge> 0" sledgehammer
ultimately have c2: "(2 * x) * x + 1 - (2 * x) * (sqrt 2) \<ge> 0" sledgehammer
have "(2*x) * (x + 1/(2*x) - sqrt 2) = (2 * x) * x + (2 * x) * (1/(2*x)) - (2*x) * sqrt 2" sledgehammer
also have "... = (2 * x) * x + 1 - (2*x) * sqrt 2" using c0 sledgehammer
(* Step 2: Rearrange the inequality to get 2𝑥" + 1 − 2𝑥 2 ≥ 0.*)
also have "... \<ge> 0" using c2 sledgehammer
(* Step 3: Factor the expression to get ( 2𝑥 − 1)"≥ 0.*)
ultimately have "(2*x) * (x + 1/(2*x) - sqrt 2) \<ge> 0" sledgehammer
hence "x + 1/(2*x) - sqrt 2 \<ge> 0" using mult_pos_pos sledgehammer
(* Step 4: Conclude that the inequality is true. *)
then show ?thesis sledgehammer

qed
then show ?thesis sledgehammer

qed

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that 𝑥 + 𝑦 = 13 and 𝑥𝑦 = 24. Find 𝑥" + 𝑦" and show that it is equal to 11.

Proof:
theorem mathd_algebra_510:

fixes x y :: real
assumes h0 : "x+y=13"

and h1 : "x*y=24"
shows "sqrt (x^2 + y^2) = 11"
(* Step 1: Use the identity 𝑥" + 𝑦" = 𝑥 + 𝑦 " − 2𝑥𝑦 to find 𝑥" + 𝑦" in terms of 𝑥 and 𝑦.

Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥" + 𝑦" .
Step 3: Show that 𝑥" + 𝑦" = 121.
Step 4: Take the square root of both sides to find 𝑥" + 𝑦".
Step 5: Show that 𝑥" + 𝑦" = 11. *)

proof -
(* Step 1: Use the identity 𝑥" + 𝑦" = 𝑥 + 𝑦 " − 2𝑥𝑦 to find 𝑥" + 𝑦" in terms of 𝑥 and 𝑦. *)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥" + 𝑦" . *)
also have "... = (13)^2 - 2*24" using h0 h1 sledgehammer
(* Step 3: Show that 𝑥" + 𝑦" = 121. *)
also have "... = 121" sledgehammer
finally have c1: "x^2 + y^2 = 121" sledgehammer
(* Step 4: Take the square root of both sides to find 𝑥" + 𝑦". *)
then show ?thesis sledgehammer
(* Step 5: Show that 𝑥" + 𝑦" = 11. *)

qed

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that #$%

"
= 7 and 𝑥𝑦 = 19. Find 𝑥" + 𝑦".

Proof:
theorem mathd_algebra_332:

fixes x y ::real
assumes "(x + y) / 2 = 7"

and "sqrt (x * y) = sqrt 19"
shows "x^2 + y^2 = 158"

(* Step 1: Use the identity (𝑥 + 𝑦)"= 𝑥" + 2𝑥𝑦 + 𝑦" to find 𝑥" + 𝑦" in terms of 𝑥 + 𝑦 and 𝑥𝑦.
Step 2: Substitute the given values of 𝑥 + 𝑦 and 𝑥𝑦 to find 𝑥" + 𝑦".
Step 3: Show that 𝑥" + 𝑦" = 158. *)

proof -
(* Step 1: Use the identity (𝑥 + 𝑦)"= 𝑥" + 2𝑥𝑦 + 𝑦" to find 𝑥" + 𝑦" in terms of 𝑥 + 𝑦 and 𝑥𝑦. *)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 + 𝑦 and 𝑥𝑦 to find 𝑥" + 𝑦". *)
also have "... = (2*7)^2 - 2*(sqrt 19)^2" using assms sledgehammer
(* Step 3: Show that 𝑥" + 𝑦" = 158. *)
also have "... = 158" sledgehammer
finally show "x^2 + y^2 = 158" sledgehammer

qed

Prompt

ChatGPT Output

Figure 14: A case from miniF2F-test. Our method predicts viable subgoals and utilizes demonstration
examples involving squaring and square root operations to finalize the proof.
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As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Given a real number $n$ such that 𝑛 ≠ 3 and ("#$)

("&')
= 2, show that 𝑛 = 11.

Proof:
theorem mathd_algebra_181:

fixes n :: real
assumes h0 : "n \<noteq> 3" and h1 : "(n+5) / (n-3) = 2"
shows "n=11"
(* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛.

Step 2: Simplify the equation to obtain an expression for 𝑛.
Step 3: Show that the expression for 𝑛 is equal to 11. *)

proof -
(* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛. *)

have "n+5 = 2 * (n-3)" using h0 h1 sledgehammer
(* Step 2: Simplify the equation to obtain an expression for 𝑛. *)
thus ?thesis sledgehammer
(* Step 3: Show that the expression for 𝑛 is equal to 11. *)

qed

Problem:
Prove by induction that the sum of the first 𝑛 odd numbers is 𝑛(.

Proof:
theorem induction_sum_odd:

fixes n :: nat
assumes "n > 0"
shows "(\<Sum> (k::nat) = 0..(n-1). 2 * k + 1) = n^2"
(* Step 1: Base case: Show that the sum of the first odd number is 1.

Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(.
Step 3: Combine the two steps to complete the proof. *)

using assms
proof (induct n)

(* Step 1: Base case: Show that the sum of the first odd number is 1. *)
case (Suc n)
have ?case when "n=0" using that sledgehammer
(* Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(. *)
moreover have ?case when "n>0"
proof -

have "(\<Sum>k = 0..(n-1). 2 * k + 1) = n^2" using Suc(1) that sledgehammer
then have "(\<Sum>k = 0..(n-1). 2 * k + 1) + (2 * n + 1) = n^2 + 2 * n + 1" sledgehammer
then show ?thesis sledgehammer

qed
(* Step 3: Combine the two steps to complete the proof. *)
ultimately show ?case sledgehammer

qed simp

Problem:
For any natural number 𝑛 greater than or equal to 9, there exists a natural number 𝑥 such that 𝑥( is equal to the quotient of the difference between the 
factorial of 𝑛 + 2 and the factorial of 𝑛 + 1 divided by the factorial of 𝑛.

Proof:
theorem amc12b_2020_p6:

fixes n :: nat
assumes h0: "9 \<le> n"
shows "\<exists>x::nat. (real_of_nat x)^2 = (fact (n + 2)

- fact (n + 1)) / fact n"

(* Step 1: Use the definition of factorial to simplify the expression.
Step 2: Rearrange the expression to obtain a perfect square.
Step 3: Show that the perfect square is a natural number. *)

proof -
(* Step 1: Use the definition of factorial to simplify the expression. *)
have "(fact (n + 2) - fact (n + 1)) / fact n = ((n+2)*(n+1)*fact n - (n+1)*fact n) / fact n" using fact_reduce[of "n+1"] sledgehammer
(* Step 2: Rearrange the expression to obtain a perfect square. *)
also have "... = (n+1) * (n+2) - (n+1)" sledgehammer
also have "... = (n+1)^2" sledgehammer
(* Step 3: Show that the perfect square is a natural number. *)    
finally show ?thesis using assms sledgehammer

qed

Prompt

ChatGPT Output

Figure 15: A case from miniF2F-test. Our method recognizes viable subgoals and successfully
finishes the proof.
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