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Abstract
While designing inductive bias in neural archi-
tectures has been widely studied, we hypothesize
that transformer networks are flexible enough to
learn inductive bias from suitable generic tasks.
Here, we replace architecture engineering by en-
coding inductive bias in the form of datasets. In-
spired by Peirce’s view that deduction, induction,
and abduction are the primitives of reasoning, we
design three synthetic tasks that are intended to
require the model to have these three abilities.
We specifically design these tasks to be synthetic
and devoid of mathematical knowledge to ensure
that only the fundamental reasoning biases can
be learned from these tasks. This defines a new
pre-training methodology called “LIME” (Learn-
ing Inductive bias for Mathematical rEasoning).
Models trained with LIME significantly outper-
form vanilla transformers on four very different
large mathematical reasoning benchmarks. Un-
like dominating the computation cost as tradi-
tional pre-training approaches, LIME requires
only a small fraction of the computation cost
of the typical downstream task. The code for
generating LIME tasks is available at https:
//github.com/tonywu95/LIME.

1. Introduction
Inductive bias is essential for successful neural network
learning. Many of the breakthroughs in machine learning
are accompanied by new neural architectures with better
inductive biases, such as locality bias in convolutional neu-
ral networks (LeCun et al., 1999), recurrence and memory
in LSTMs (Hochreiter & Schmidhuber, 1997), and struc-
tural bias in graph neural networks (Scarselli et al., 2008).
However, explicitly encoding inductive biases as new neural
architectures can be difficult for abstract concepts such as
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mathematical reasoning. Attempts to design elaborate ar-
chitectures for reasoning often fall short of the performance
of the more generic transformer architecture. In this work,
we aim to avoid the search for new architectures and in-
vestigate whether one can learn useful inductive bias for
mathematical reasoning through pretraining.

Large-scale unsupervised pretraining of language mod-
els revolutionized the field of natural language processing
(NLP), improving the state-of-the-art in question answering,
name entity recognition, text classification, and other do-
mains, e.g. (Radford et al., 2018; Devlin et al., 2019; Yang
et al., 2019; Liu et al., 2019; Raffel et al., 2020; Brown
et al., 2020). As a result, pretraining has become a common
practice for modern neural network based NLP. A popular
explanation for the benefit of pretraining is that the model
can learn world knowledge by memorizing the contents of
the natural language corpus, which can be useful in down-
stream tasks, such as question answering and text classifi-
cation. However, there is another potential advantage of
pretraining—it may distill inductive biases into the model
that are helpful for training on downstream tasks (Brown
et al., 2020; Warstadt & Bowman, 2020). We focus on the
latter and design pretraining tasks that are intentionally de-
void of world knowledge and only allow the model to learn
inductive bias for reasoning.

Inspired by the logician Charles Peirce (Peirce, 1992), we
consider the following three reasoning primitives:

1. Deduction: the ability to deduce new truths from given
facts and inference rules.

2. Induction: the ability to induce general inference rules
from a set of known facts.

3. Abduction: the ability to explain the relationship be-
tween the evidences and inference rules.

To endow the models with an inductive bias for mathemati-
cal reasoning, we design a synthetic task for each of the three
reasoning primitives. We hypothesize that the transformer
networks are flexible enough to learn strong inductive bias
from the three synthetic reasoning tasks, which helps to
improve the performance on downstream tasks. Although
such inductive bias may be useful in general reasoning tasks
(e.g., NLP tasks), in this work, we focus on mathematical
reasoning benchmarks, for which we expect to observe the
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largest gains. We call training on these tasks LIME – an
acronym for “Learning Inductive Bias for Mathematical
rEasoning”. Note that there is only a limited amount of pre-
training data available for formal mathematical benchmarks,
therefore the study of generic pre-training techniques is par-
ticularly important for the success of machine learning in
mathematical reasoning.

We demonstrate that LIME pretrained models provide signif-
icant gains across four large mathematical reasoning bench-
marks: IsarStep (Li et al., 2021), HOList Skip-tree (Rabe
et al., 2021), MetaMathStep (Polu & Sutskever, 2020), and
LeanStep (de Moura et al., 2015). Notably, LIME improved
the top-1 accuracy from 20.4% to 26.9% IsarStep, and from
15.5% to 29.8% on LeanStep. Compared to traditional pre-
training tasks, LIME has two major differences. First, LIME
requires only a fraction of the computational cost of down-
stream tasks. With only about two hours of training on a
single modern GPU, one already obtains all the benefits,
in contrast to days of training on a large natural language
corpus with hundreds of GPUs/TPUs. Secondly, LIME does
not load the input embeddings or the weights in the output
layer for finetuning on downstream tasks. This allows one to
use the same pretrained model for a variety of downstream
tasks, which can have vastly different vocabularies due to
language or tokenization differences.

Our method can also be regarded as a form of curriculum
learning, in which the model is taught basic, extremely
generic but general skills before being trained on the specific
problem domain.

To summarize, the contributions of the paper are:

1. Providing the first method to design inductive biases in
the form of datasets for mathematical reasoning.

2. Demonstrating significant improvements in the reason-
ing performance of transformer models on three large
mathematical reasoning benchmarks with negligible ex-
tra computation cost.

3. By showing how pretraining brings benefits other than
learning content knowledge, disentangling the study of
its working mechanism.

2. Related Work
Learning Models Applied to Mathematics There has
been increasing interest in applying deep learning methods
to Interactive Theorem Provers (ITP) (Bansal et al.; 2019;
Gauthier et al., 2020; Huang et al., 2019; Yang & Deng,
2019; Wu et al., 2021; Li et al., 2021; Polu & Sutskever,
2020). The work that is most related to ours is GPT-f (Polu
& Sutskever, 2020). The authors performed pretraining on
several natural language corpora and showed significant
improvements for an ITP system – MetaMath. Different

from ours, they used GPT-style large-scale language mod-
eling pretraining, which dominates the computation cost
compared to the downstream task. We, on the other hand,
propose pretraining on a few lightweight synthetic tasks
costing only a minor fraction of the computation spent on
the downstream task.

Lample & Charton (2020) have demonstrated that trans-
former models can be used for symbolic mathematics by
successfully predicting the integrals of formulas from a ran-
domly generated dataset. Similar observations are made for
logical problems relevant to verification: that transformer
networks can learn the semantics of logics (Hahn et al.,
2020). Rabe et al. (2021) have shown that mathematical
reasoning can emerge from self-supervised training alone.
Li et al. (2021) show that language models can learn to syn-
thesize missing high-level intermediate propositions given
a local context. Piotrowski & Urban (2020) used RNNs in
automated theorem provers for first-order logic. Wang et al.
(2020) explored the use of machine translation to translate
between synthetically generated natural language descrip-
tions of proofs and formally represented proofs. Urban &
Jakubův (2020) present initial experiments on generating
mathematical conjectures with a Transformer model.

Saxton et al. (2019) suggest a dataset for the analysis of
mathematical reasoning skills. In contrast to the datasets
considered here, their dataset is synthetic, focuses on calcu-
lation with concrete numbers, and only contains relatively
few symbolic tasks.

Language Model Pretraining The advent of the trans-
former architecture (Vaswani et al., 2017) and the BERT
style pretraining (Devlin et al., 2019) represented a huge
improvement in the quality of language modeling. Since
then, an explosion of research activity in the area pushed the
quality of language models through better pretraining tasks.
Where BERT (Devlin et al., 2019) masks out a fraction of
the input tokens, later works demonstrated the advantages
of masking out subsequences (Song et al., 2019; Dong et al.,
2019; Joshi et al., 2020; Raffel et al., 2020; Conneau &
Lample, 2019) and whole sentences (Zhang et al., 2020).

Besides the choice of pretraining tasks, the scale of lan-
guage models is also an important factor. Language models
improve in quality and develop new abilities as they grow
larger while trained on the same data (Radford et al., 2018;
Raffel et al., 2020; Brown et al., 2020).

Inductive Biases in General There have been works
studying learning inductive biases in other contexts. In
particular, McCoy et al. (2020) studied whether one can
learn linguistic inductive biases on synthetic datasets via
meta-learning. Papadimitriou & Jurafsky (2020) shows
inductive biases learned in music data can be useful for
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natural language. They further designed several synthetic
tasks and showed similar kind of improvements for natural
language tasks. From a more theoretical point of view, Xu
et al. (2020) formalize an aspect of inductive (architectural)
bias under the context of GNNs, with a notation called ar-
chitectural alignment. The architecture is aligned when
the architecture can perfectly simulates the ground truth
solution. But their work is limited to showing alignment
in combinatorial problems, whose ground truth solutions
are known. In contrast, our work tries to learn architectural
bias by relying on the flexible Transformer architecture and
training on synthetic datasets.

Inductive Biases for Mathematics Previous work study-
ing inductive biases for logical reasoning has focused on
encoding bias in the neural architecture. Initial works fo-
cused on encoding the tree structure of expressions using
TreeRNNs (Evans et al., 2018). Graph neural networks
are shown to provide a much stronger performance than
tree models in premise selection (Wang et al., 2017) and
theorem proving (Paliwal et al., 2020). GNNs also scale
to larger formulas in SAT (Selsam et al., 2019; Selsam &
Bjørner, 2019; Han, 2020), QBF (Lederman et al., 2020),
and #SAT (Vaezipoor et al., 2021). Crouse et al. (2019)
have shown that pooling mechanisms can have an impact
on the performance of GNNs on logical formulas as well.
Closely related, Hellendoorn et al. (2020) have shown that
it can be helpful to hard-code the tree structure of programs
in the attention mask of transformers. Schlag et al. (2019)
developed an architecture for encoding relational informa-
tion using tensor product representation for mathematical
reasoning.

3. Methods
In this section, we first discuss the primitives of reasoning,
inspired by Peirce’s views, and design one synthetic task for
each reasoning primitive.

3.1. Reasoning Primitives

In Peirce’s view, there are exactly three kinds of reasoning:
deduction, abduction, and induction. Deduction is known as
the workhorse for mathematics. It is the process of deriving
new facts by applying logical inference rules to known facts
or premises. On the other hand, abduction and induction
can be thought of as the inverses of deduction. If we call the
premise used in deduction as Case, its logical rule as Rule,
and its conclusion as Result, then abduction is equivalently
the inference of a Case from a Rule and a Result, while
induction may be said to be the inference of a Rule from
a Case and a Result. We summarize the three reasoning
primitives in the following table:

Reasoning Primitives Inference Map
Deduction Rule, Case ! Result
Abduction Rule, Result ! Case
Induction Case, Result ! Rule

To give an example, we let Rule be “All the beans in this
bag are white”, Case be “These beans are from this bag”,
and Result be “These beans are white”. Deduction is to
derive the fact that these beans are white (Re) from knowing
all the beans from this bag are white (R) and these beans
are from this bag (C). Abduction explains why the beans
are white (Re) from knowing that all the beans in the bag
are white (R) – because these beans must be from the bag
(C). Lastly, induction aims to provide a general principle
to observing the fact that the beans are white (Re) and they
come from this bag (C), which is that all the beans in the bag
must be white (R). We refer to Peirce (1992) and Bellucci
& Pietarinen (2015) for more elaborate discussions on the
primitives of reasoning.

Mathematical reasoning exhibits nontrivial uses of these
reasoning primitives. Deduction happens when one needs to
derive new valid statements from the given premise (Case)
and theorems in the library (Rule). Abduction is used to
postulate conjectures from the known facts and theorems,
allowing one to decompose the challenging theorem into
subgoals for proof. Induction, the ability to extract general
principles from known facts and theorems is also one of the
major activities of mathematical reasoning. It is used when
one derives theorems from special cases and proposes new
definitions and general frameworks to encapsulate existing
knowledge.

3.2. LIME Synthetic Tasks For Reasoning Primitives

We design three synthetic tasks inspired by the three reason-
ing primitives. As discussed in the previous section, all of
the reasoning primitives consist of three essential elements:
Rule, Case, and Result. Inspired by this, we first design a
method to generate those elements. Once they are generated,
we can construct tasks that predict one element from the
other two. In the following, we describe one simple way to
generate those three elements, though we acknowledge that
there are many other possible approaches.

We require two types of symbols: 1. math symbols, 2. rule
symbols. In general, these symbols can take any forms (e.g.,
integer representations). But for the ease of discussion, we
will think of math symbols as the union of those operators
used in mathematics (e.g., “+� ⇤ = ()&”) and lower case
letters (e.g., a, b, c . . . ), and rule symbols as upper case
letters (e.g., A, B, C . . . ). We now construct Rule, Case,
and Result in order:

1. Rule is a randomly sampled string that consists of i)
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rule symbols and ii) math symbols. The length of the
string is randomly sampled from a range. For instance,
a randomly sampled rule can be: A ⇤A+B = C with
rule symbols A, B, and C.

2. Case is a dictionary that represents substitutions. For
each rule symbol used in the Rule string, we sample a
random string of random length that consists of math
symbols. This forms a dictionary, whose keys are all rule
symbols, and the values are the corresponding sampled
string. To illustrate, following the previous example, for
each A, B and C, we sample a random string to form a
dictionary as: {A : a, B : b, C : d+ e}.

3. Result is the outcome of the substitution. For each rule
symbol in the Rule string, we replace it with the cor-
responding value stored in the Case dictionary. This
gives rise to the Result string. As per the previous exam-
ple, we now substitute A with a, B with b, and C with
d+ e into the Rule string, generating the Result string:
a ⇤ a+ b = d+ e.

After Rule, Case, and Result are generated, we can con-
struct three tasks for deduction, abduction, and induction
respectively. We define the three synthetic tasks as follows:

• Deduct: Source: Rule string and Case dictionary.

Target: Result string.

• Abduct: Source: Rule string and Result string.

Target: Case dictionary.

• Induct: Source: Case dictionary and Result string.

Target: Rule string.

We also consider a task called Mix, which is a uniform mix
of three tasks. Namely, during generation, we randomly
select a task and sample an example from that task. To
formulate them as sequence to sequence tasks, we represent
the Case dictionary also as a string, e.g., “{A : a, B :
b, C : d+e}”. An example of Abduct using the examples
of Rule, Case, and Result above is to predict the target
{A : a, B : b, C : d+ e} from the source A ⇤A+B = C
<s> a ⇤ a+ b = d+ e.

Pre-training on our synthetic tasks can be seen as a form of
skip-component learning. There are three essential compo-
nents: Rule, Case and Result, and we skip one of them and
use the remaining two elements to reconstruct the missing
one. Past work has shown that learning to predict missing
words (Devlin et al., 2019), subsequences (Song et al., 2019;
Raffel et al., 2020), or subtrees (Rabe et al., 2021) are strong
pre-training tasks.

3.3. Symbol-Agnostic Representation

In order to solve the synthetic tasks, the model needs to
distinguish which set of symbols can be substituted (rule
symbols). As a result, the model may memorize information
about the symbols that is irrelevant to the inductive biases
encoded in the task. To prevent such memorization, we
propose a way to make the synthetic tasks agnostic to the
choice of symbols.

We first note that the choice of symbols is irrelevant to our
synthetic tasks. To avoid symbol-specific memorization, for
each training and evaluation example, we randomly sample
two sets of symbols to be used in Rules and in the rest of
the example. But for the Abduct task, the model needs
to know which symbols are replaced by the Rule part of
the example and which symbols are in the Result language.
We simply list the split of the symbols used in the example
at the beginning of the input string, marked by two special
symbols, <Rule> and <Math>. They are followed by the
original source string. The target string remains unchanged.
For example, the previous example in the Abduct task
becomes,

Source: <Rule> A B C <Math> ⇤ + = a b d e <s>
A ⇤A+B = C <s> a ⇤ a+ b = d+ e

Target: {A : a, B : b, C : d+ e}

In our implementation, we use integers to represent sym-
bols. Specifically, for each example, we sample two disjoint
sets of integers from the set {1, . . . , S} to represent the
math symbols and the rule symbols, where S is the size
of the vocabulary. In our experiments, we sample 44 math
symbols and 24 rule symbols for each problem. The com-
plete pseudo-code of generating the symbols, Rule, Case,
and Result for one task example is provided in Appendix
Algorithm 1.

4. Experiments
In this section, we present results on four large mathematical
reasoning tasks that are especially useful in the context of
automated theorem proving. Our results show significant
gains in learning inductive biases from synthetic tasks. We
have selected four tasks to cover various different styles
of interactive theorem provers: The HOL-Light (skip-tree)
corpus was created from very high-level tactic-based proofs,
but it is less interpretable than IsarStep’s declarative style
corpus. We also evaluate on model’s ability to conjecture
unseen lemma strings with Lean theorem prover, which is
host to some of the most sophisticated formalized mathe-
matics. Lastly, we evaluate the next proof-step prediction
task on the set.mm library of MetaMath, which consists of
very granular, basic proof steps. Namely, the proof steps are
more predicable and average proof lengths have significantly
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increased.

4.1. Experiment Details

LIME Pretraining We generate datasets of our synthetic
tasks for pretraining: Deduct, Abduct, Induct, Mix.
For pretraining of IsarStep, we used a vocabulary size S of
1000. For the other two downstream tasks, we used a vocab-
ulary size of 100. The reason we used different vocabulary
sizes was that we found (cf. appendix) the discrepancy in
vocabulary size affects the performance of a downstream
task if it has a very large vocabulary size (IsarStep has 28K).
We use 44 math symbols and 24 rule symbols. The length
of the Rule string is sampled from 5 to 20, the length of the
string for each substitution (the values of Case dictionary)
is sampled from 2 to 8. We used word-level tokenization for
all the tasks. We pretrained the model for 20K updates. For
tasks with larger vocabulary size (i.e., 1000), we found the
learning became more difficult. Hence we used a curriculum
learning scheme: we first trained the model for 10K steps on
the same task with a vocabulary size of 100, then continue
training for another 10K step on vocabulary size of 1000.
The pretraining was done on a single Nvidia Tesla T4 GPU
with 4 CPU cores for 2 hours. We set the maximum number
of tokens in a batch to 4096, and accumulate four batches
of gradients for one parameter update. We used the Adam
optimizer (Kingma & Ba, 2015) with learning rate 3 · 10�4.
We used a dropout rate of 0.1 and label smoothing (Szegedy
et al., 2016) with a coefficient 0.1.

Fine-tuning For all the downstream tasks in this section,
when loading the pretrained models for fine-tuning, we do
not load in the vocabulary embeddings nor the output layer
weights. For the downstream task IsarStep and MetaMath-
Step, we used four Nvidia Tesla T4 GPU with 16 CPU cores
for training. We set the maximum number of tokens in a
batch to 4096, and accumulated four batches of gradients
for one parameter update. We trained the model for 200K
updates. We used the Adam optimizer, and we searched
over the learning rates {3 · 10�4, 7 · 10�4}, and warmup
steps {4000, 8000}. We used a dropout rate of 0.1 and label
smoothing with a coefficient 0.1. For the HOList skip-tree
task, we used TPUs for running the experiments. We used
a batch size of 256 sequences and trained the model for 1
million updates.

Architecture All experiments used the transformer base
model from (Vaswani et al., 2017), i.e. 512 hidden size,
2048 filter size, 8 attention heads. For the IsarStep and
MetaMathStep task, we used 6 layers for both the encoder
and decoder, implemented using fairseq (Ott et al., 2019).
For the HOList skip-tree experiment, we used a somewhat
modified transformer architecture with 8 encoder and 4
decoder layers of the same size as above in which the self-

Table 1. Test top-1, top-10 (%) accuracy on the IsarStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain (Li et al., 2021) 20.4 33.1
HAT (Li et al., 2021) 22.8 35.2
LIME Deduct 24.7 37.7
LIME Abduct 26.7 41.0
LIME Induct 23.9 38.8
LIME Mix 26.9 40.4

Figure 1. Validation BLEU along with training on the IsarStep
task.

attention and attention over the encoder output were merged.

Evaluation During training, we kept track of the best
validation tokenized BLEU score 1, and we used the model
with validation BLEU for evaluation on the test set. We
report top-1 and top-10 accuracies. We consider an output
sequence as correct if it matches the target sequence exactly.
We performed a beam search with width 10. The top-1
accuracy is then defined as the percentage of the best output
sequences that are correct. The top-n accuracy is defined as
the percentage of target sequences appearing in the top n
generated sequences.

4.2. IsarStep

The IsarStep task is taken from (Li et al., 2021). IsarStep is
a task of predicting the missing intermediate propositions
given surrounding propositions to bridge the gap between
the goal and the current state of the proof. The dataset was
mined from the public repository of formal proofs of the
Isabelle proof assistant (Paulson, 1994). Unlike HOList and
MetaMath, IsarStep contains mostly declarative proofs, a
proof style close to humans’ prose proofs. The dataset has a
broad coverage of undergraduate and research-level math-
ematics and computer science theorems. There are 820K,

1https://github.com/pytorch/fairseq/blob/
master/fairseq/tasks/translation.py#L396
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Table 2. Test top-8 Accuracy on Skip-Tree HOList (%).

Model Equation completion Hard type inference Missing assumptions Easy type inference

No pretrain (Rabe et al., 2021) 46.3 95.0 41.8 95.9
LIME Deduct 50.3 94.8 47.9 97.0
LIME Abduct 48.4 94.8 46.1 96.3
LIME Induct 44.8 94.9 42.6 96.4
LIME Mix 51.7 95.6 46.1 97.6

Table 3. Test top-1, top-10 (%) accuracy on the MetaMathStep
task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 67.7 76.5
LIME Deduct 68.8 77.4
LIME Abduct 68.8 76.1
LIME Induct 69.9 78.0
LIME Mix 69.1 77.9

5000, 5000 sequence pairs for the training, validation, and
test sets with a maximum of 800 tokens in source sequences
and 200 tokens in the target sequences. Following (Li et al.,
2021), during training, we use 512 as the maximum length
for both the source and target, and truncated those that ex-
ceed the length to 512. For reporting, we evaluate all 5000
test examples regardless of their lengths.

The results on the IsarStep task for four pretrained models
and the baseline transformer model without pretraining is
shown in Table 1. We also include another baseline, HAT
transformer introduced in (Li et al., 2021), which is a spe-
cially designed hierarchical transformer architecture tailored
to this task. We see the pretrained model achieved substan-
tial improvement over the model trained from scratch as well
as HAT. Notably, the model that was pretrained on Abduct
improved the top-10 accuracy from 33.1% to 41.0%, for
almost 8% absolute improvement. The model pretrained on
Mix performed the best on top-1 accuracy, improving the
baseline by 6.5% accuracy. We also showed the validation
BLEU scores along training in Figure 1. We can see that
the pretrained models learned much faster than the model
trained from scratch. With around 50K steps of updates, the
pretrained model already obtained better BLEU scores than
the best score achieved by the un-pretrained model. More-
over, since the downstream task requires 200K steps of
training with 4 GPUs, the amount of computation spent on
pretraining is only 2.5% of the downstream task, strongly
demonstrating the efficiency of the proposed pretraining
method.

Table 4. Test top-1, top-10 (%) accuracy on the LeanStep unseen
lemma prediction task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 15.8 27.4
LIME Deduct 25.8 38.0
LIME Abduct 26.0 38.6
LIME Induct 25.0 38.2
LIME Mix 29.8 41.8

4.3. HOList Skip-Tree

As the second mathematical reasoning benchmark, we con-
sider the HOList skip-tree evaluation tasks by Rabe et al.
(2021). These tasks include two variants of type inference,
predicting under which assumptions theorems hold, and
completing equalities. All source expressions for these tasks
are taken from the validation set of the theorem database of
the HOList proof logs (Bansal et al.). The evaluations are
done on a random sample of 1000 instances from the full
evaluation sets. We initialized the model parameters with
the pretrained weights and then repeated the experiments
by Rabe et al. (2021). That is, we trained the models for up
to 1M parameter updates on the training set with batch size
256 and repeat the evaluation every 100K steps. In Table 2
we present the best result from these 10 evaluation runs.
We see a significant improvement in these reasoning tasks
when the models are initialized with the pretrained weights.
Notably, on equation completion and missing assumptions
task, we improved the beam search (with width 8) exact
match rate performance from 46.3% to 51.7% and 41.8%
to 47.9%. Note that this is despite the amount of pretraining
compute cost being negligible: it takes less than 1 percent
of the cost of the downstream task training. Pretraining
used 1/20 number of the update steps (50K vs 1M) with 8
(and 4) times smaller batches (pretraining has much shorter
sequence lengths, 128 vs. 1024 and 512, respectively).

4.4. MetaMathStep

Compared to other ITPs, MetaMath is a low-level proving
system: each proof step makes only a small step towards the
goal. As such, each proof contains many more proof steps
than in other ITPs: with 37, 000 theorems in the human-
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written theorem library, there are around 3 million proof
steps. We extract the proof steps and use them to construct
a sequence-to-sequence task following Polu & Sutskever
(2020) (their proof step training objective).

In this task, the model is asked to generate PROOFSTEPS
given a GOAL, namely, the GOAL string is the source input,
and PROOFSTEPS is the target output. We follow (Polu
& Sutskever, 2020) and use their string representation for
the GOAL and the PROOFSTEPS. Instead of using sub-
word tokenization in Polu & Sutskever (2020), we use a
character-level representation for our task. Following Polu
& Sutskever (2020), we split theorems into train/valid/test
theorems of size 35K, 1K, 1K, and associate all proof steps
of a theorem with that split. For each dataset, we filter ex-
amples with lengths longer than 1024. This reduced the
total number of proof steps to 1.4 million. For validation
and test set, we randomly sample 3000 examples out of 40K
(after filtering) and perform validation and test evaluations
on them. In Table 3 we present the impact of LIME on
MetaMathStep. We also observe gains from LIME on this
dataset, with the model trained on Induct task achieving
2.2% top-1 and 1.5% top-10 test accuracy improvement.
Similarly, as for the IsarStep task, the computation spent on
pretraining is only 2.5% of the downstream task.

4.5. LeanStep: Unseen Next Lemma Prediction Task

Lastly, we look at a mathematical benchmark based on Lean
3 theorem prover. Lean has an extremely active commu-
nity and is host to some of the most sophisticated formal-
ized mathematics in the world, including scheme theory
(Buzzard et al., 2019), forcing (Han & van Doorn, 2020),
perfectoid spaces (Buzzard et al., 2020), and condensed
mathematics (Scholze, 2020). We extracted a similar style
of dataset as MetaMathStep from Lean, that is, we predict
the next lemma to apply given the current goal state (or
commonly known as the tactic state in Lean). Unlike Meta-
MathStep, we focus on predicting lemmas that have not been
seen during training time. Namely, in this task, we evaluate
the model’s capability of conjecturing a novel lemma string
given a goal. Specifically, we extracted 498, 624 number
of goal, next lemma pairs from Lean mathlib library (math-
lib, 2020; Han et al., 2021). We found there are 34, 867
lemmas that appeared only once in the entire dataset. We
then randomly sampled 8k of lemmas from this set and
used the corresponding goal lemma pairs for the validation
and the tests (each 4k). As such, during validation and
testing, the model needs to predict lemmas that have not
been seen during training. We present the results on LIME
and the baseline in Table 4. We observed a huge gain with
LIME pretraining. Remarkably, LIME MIX doubled the top-
1 accuracy compared to the baseline unpretrained model,
improving the accuracy from 15.8% to 29.8%.

Table 5. Comparisons to other pretraining tasks on IsarStep task.

Model Top-1 Acc. Top-10 Acc

No pretrain (Li et al., 2021) 20.4 33.1
LIME Mix 26.9 40.4
Pretrain on MetaMathStep 23.1 35.7
Pretrain on WMT En-De 17.2 30.3

Table 6. Pretraining on IsarStep for the MetaMathStep task.

Model Top-1 Acc. Top-10 Acc.

No pretrain 67.7 76.5
LIME Mix 69.1 77.9
Pretrain on IsarStep 67.0 76.1

5. Ablation Studies
In this section, we perform ablation studies. Additional
ablation studies can be found in Appendix C.

5.1. Pretraining on Formal Reasoning and Natural
Language Tasks

Here we investigate how LIME compares to pretraining
on natural language or existing formal reasoning datasets.
In this set of experiments, we pretrained three models on
Mix, MetaMathStep, and on the WMT 2016 English-to-
Germany (WMT En-De) translation task, and then we fine-
tuned and evaluated these models on the IsarStep task. We
pretrained the model on MetaMathStep and WMT EN-DE
for 200K steps with 4 GPUs, which is 40 times more com-
putation spent than on LIME. Due to the mismatch between
vocabularies of the pretraining task and the downstream
task, we do not load the vocabulary embeddings nor output
layer weights. The results in Table 5 show that pretraining
on MetaMathStep did provide gains, though significantly
smaller than gains provided by LIME Mix, despite their 40
times higher computational cost. Moreover, pre-training on
WMT translation had even a negative effect on the perfor-
mance. We also conducted an analogous experiment with an
evaluation on the MetaMathStep. The result is shown in Ta-
ble 6. In contrast to MetaMath helping IsarStep, we see that
pretraining on IsarStep task did not help the downstream
task MetaMathStep. We hypothesize that this could be due
to MetaMathStep task is closer to the LIME tasks than Is-
arStep, and hence providing more gains than the opposite
direction. We leave investigations to the future versions.

5.2. Do we need vocabulary embeddings for
fine-tuning?

As mentioned earlier, we did not load in the vocabulary
embeddings from the pretrained models when we switched
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Table 7. Whether one needs to load vocabulary embeddings and
output layer weights on IsarStep tasks.

Model Top-1 Acc. Top-10 Acc

No pretrain (Li et al., 2021) 20.4 33.1
LIME Mix 26.9 40.4
LIME Mix + Loading All Weights 26.7 40.6

to fine-tuning on downstream tasks. Even without loading
the vocab embeddings, the pretrained models still improved
the performance. In this ablation study, we investigate how
much this decision has affected the results and whether vo-
cabulary embeddings can help improve the performance
even further. We performed the comparisons on IsarStep.
The task contains a token vocabulary of size 28336. We
generated new synthetic tasks for the same vocabulary size,
such that we can load the vocabulary embeddings and out-
put layers when initializing the model for IsarStep. Table 7
shows that this led to similar performance. This aligns with
our expectation that the model should not learn content
specific knowledge that is potentially stored in the vocabu-
lary. These weights turn out to be non-essential for the final
performance, supporting the evidence that the transformer
learns inductive biases from the pretraining task.

5.3. Does LIME help LSTMs?

In this section, we investigate if LIME also helps other
architectures than transformers. In particular, we applied
LIME to two LSTM based architectures: 1. vanilla LSTM,
2. LSTM with attention mechanism. The vanilla LSTM is
a stacking LSTM with 4 layers, each with 1000 cells, and
1000-dimensional embeddings. The LSTM with attention
architecture is taken from (Luong et al., 2015), also with 4
layers, 1000 cells and 1000-dimensional embeddings. We
evaluate on the IsarStep task, and compared a model trained
from scratch and a model pre-trained on LIME abduct
task. We used the same training protocol as described in
4.1. The results are shown in Table 8, along with the results
on transformer. We observe that LIME improved LSTM as
well as LSTM with attention, but the improvements were
small compared to transformer. Specifically, if we compare
Top-1 accuracy, we can see that LIME improved LSTM
from 5.5% to 6.9%, LSTM with attention from 12.3% to
13.4%, and transformer from 20.4% to 26.7%. This obser-
vation is aligned with our hypothesis that the transformer
is a malleable architecture and hence it is capable of learn-
ing architectural inductive biases from datasets. This is
mainly attributed to the potential of learning dynamic atten-
tion graphs in self-attention layers. We note that this still
warrants further investigation as the performance of these
architectures are not at the same level, and that may also
lead to different improvements.

Table 8. Comparing LIME’s benefits on LSTMs on the IsarStep
Task

Model Top-1 Acc. Top-10 Acc.

LSTM 5.5 11.3
LSTM + LIME Abduct 6.9 14.3
LSTM + attention 12.3 22.7
LSTM + attention + LIME Abduct 13.4 26.3
Transformer 20.4 33.1
Transformer + LIME Abduct 26.7 41.0

6. Does LIME encode Induction, deduction
and abduction?

Although LIME has shown to achieve substantial improve-
ments across various benchmarks, it is not entirely clear that
the specific synthetic tasks necessarily enforce the reasoning
ability of induction, deduction and abduction. We would
like to note that deduction, induction, and abduction are
high-level and philosophical concepts, and serve only as
an inspiration for us to design the synthetic tasks. We do
not expect the model will necessarily learn exactly these
three capabilities. After all, we have chosen a particular im-
plementation of "Case", "Rule" and "Result". Furthermore,
we also design tasks mimic proof steps in formal theorem
proving (see the rewrite task in Appendix B.1), which also
achieved excellent results. Nevertheless, we believe LIME
is a first step towards building reasoning inductive biases,
and provides many inspirations and directions for future
work.

7. Conclusion
In this work, we encoded inductive biases for mathematical
reasoning in the form of datasets. We created three synthetic
tasks inspired by three reasoning primitives of deduction,
induction, and abduction. We demonstrated that pretraining
on these tasks (LIME) significantly improved the perfor-
mances across four mathematical reasoning benchmarks.
Notably, LIME requires negligible computation compared
to the downstream task, unlike being the dominating fac-
tor in previous pretraining methods. Our work naturally
poses many future research questions. Could the primitive
tasks provide similar gains for NLP tasks? Are there similar
primitive tasks for natural language reasoning? We also
look forward to disentangling the effects of pretraining be-
tween learning content knowledge and inductive bias for all
downstream tasks to better understand pre-training.
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