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Abstract

Autoformalization is the task of translating natural language materials into machine-
verifiable formalisations. Progress in autoformalization research is hindered by
the lack of a sizeable dataset consisting of informal-formal pairs expressing the
same essence. Existing methods tend to circumvent this challenge by manually
curating small corpora or using few-shot learning with large language models. But
these methods suffer from data scarcity and formal language acquisition difficulty.
In this work, we create MMA, a large, flexible, multi-language, and multi-domain
dataset of informal-formal pairs, by using a language model to translate in the
reverse direction, that is, from formal mathematical statements into corresponding
informal ones. Experiments show that language models fine-tuned on MMA can
produce up to 29−31% of statements acceptable with minimal corrections on
the miniF2F and ProofNet benchmarks, up from 0% with the base model. We
demonstrate that fine-tuning on multi-language formal data results in more capable
autoformalization models even on single-language tasks.

1 Introduction

Formal mathematics refers to mathematical content that is represented in a formal language that can
be mechanically checked by a computer. Practitioners express mathematics in formal languages
integrated into proof assistants like HOL Light [Harrison, 1996], Isabelle [Paulson, 1994], Coq [Barras
et al., 1999], and Lean [de Moura et al., 2015]. Autoformalization is the task of translating natural
language materials into verifiable formalisations. An ideal autoformalization engine can reduce the
excessive cost for modern mathematical results to be verified [Ball, 2012, Scholze and Stix, 2018].
It opens up the vast amount of mathematics expressed in natural language to automated reasoning
research fields that rely on formal languages, like automated theorem proving [Wu et al., 2022].

The hope of automatically translating informal mathematics into formally verifiable content is as
old as formal mathematics [Whitehead and Russell, 1925–1927]. Only very recently, the break-
throughs in neural networks and Neural Machine Translation (NMT) enabled autoformalization to be
learned [Wang et al., 2020, Wu et al., 2022, Jiang et al., 2023b]. NMT methods typically require a
large parallel dataset, that is, a dataset consisting of pairs of sequences expressing the same meaning
in both the source and the target language. The most challenging part of autoformalization research
is constructing such a parallel dataset in a natural and a formal language, satisfying two conditions
simultaneously: (1) the natural language component is close to how mathematics is actually written;
and (2) the number of datapoints is large enough for the data-hungry machine learning methods. This
is hard, because manually translating informal mathematical content into a formal language is only
doable by highly trained experts in both mathematics and computer science, hence costly.

In this work, we address the lack of a parallel dataset by leveraging a state-of-the-art Large Language
Model (LLM), GPT-4 [OpenAI, 2023]: we used it to translate the two largest formal corpora, Archive
of Formal Proofs in the language of Isabelle, and mathlib4 in the language of Lean4, into natural
language. This process was enabled by the key observations that informalisation is much easier than
formalisation, and a powerful LLM can produce diverse natural language outputs. As a result, we
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Table 1: Example parallel pairs from MMA.

Isabelle statement GPT-4 informalisation

lemma eint_minus_le: The lemma named “eint_minus_le” assumes that an
assumes "(b::eint) < c" extended integer “b” is less than another extended
shows "c - b > 0" integer “c”. It then shows that the result of “c”

subtracted by “b” is greater than zero.

lemma closed_superdiagonal: The set of all pairs of elements (x, y) such that x is
"closed {(x,y) | x y. x ≥ (y:: greater than or equal to y, is a closed set in the
(’a::{linorder_topology}))}" context of a linearly ordered topology.

Lean4 statement GPT-4 informalisation

theorem norm_eq_one_of_pow_eq_one For a complex number ζ and a natural number n, if
{ζ : C} {n : N} (h : ζn = 1) (hn : n ̸= 0): ζ to the power of n equals 1 and n is not equal to 0,
∥ ζ ∥= 1 := then the norm of ζ is equal to 1.

theorem mul_dvd_mul_iff_left For any three natural numbers a, b, and c, where a
{a b c : N} (ha : 0 < a) : a ∗ b | a ∗ c is greater than 0, a times b divides a times c if and
↔ b | c := only if b divides c.

created a parallel dataset of 332K informal-formal pairs, which we refer to as the MMA (Multi-language
Mathematical Autoformalization) dataset. To the best of our knowledge, this is the first dataset of
natural-formal language aligned data with more than one formal language. The only similar work
was that of Azerbayev et al. [2023], which has only one formal language (Lean3) and is 4x smaller
than our dataset. Four examples of MMA are shown in Table 1.

We fine-tuned two open-source LLMs, LLaMA-33B [Touvron et al., 2023] and Mistral 7B [Jiang
et al., 2023a], on MMA to generate corresponding formal expressions given the informal ones. The
trained model was then evaluated on two autoformalization benchmarks, miniF2F and ProofNet.
Manual inspection of 50 problems for each model from each benchmark showed that after fine-tuning,
the models could produce 29 − 31% of formal statements on the benchmarks that require no
or minimal correction, whereas the raw model produced 0%. We also fine-tuned two identical
models on the Isabelle and the Lean4 components of MMA separately for the same number of
steps. Their autoformalization performances are significantly weaker than the model trained on
multi-language data, demonstrating that parallel data containing multiple formal languages is crucial
for autoformalization training.

Contributions:

• We informalise all formal statements from the Archive of Formal Proofs and mathlib4, creating
MMA, a dataset of informal-formal pairs. This is the first natural-formal language aligned dataset
containing multiple formal languages.

• We train the first language models that can autoformalize to multiple languages in the zero-shot
setting, and manually evaluate them on two autoformalization benchmarks.

• We verify that: (1) language models trained on MMA acquire strong autoformalization abilities; and
(2) language models trained on MMA have greater autoformalization performance than those trained
on single-language partitions of it with the same computational budget.

• We release the fine-tuned models for inference. We also release the MMA dataset for people to train
their autoformalization models on, and to enrich MMA with more domains and languages.

Improving autoformalization ability of models has the potential of translating copious digital
repositories of informal human knowledge into formal languages of reasoning tools, and thus
presents an opportunity to formally verify human informal arguments and solutions. High quality
datasets such as MMA and autoformalization models like ours pave the way towards this goal1.

1The MMA dataset and the fine-tuned models are available from the official repository: MMA.
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2 Related Work

Autoformalization Datasets. Wang et al. [2018, 2020] manually aligned a small parallel dataset
and generated a larger parallel dataset with a rule-based informalisation tool [Bancerek, 2006]
from Mizar to LATEX. Manual alignment is almost as expensive as formalising mathematics anew.
Moreover, unlike generative neural informalisation tools (e.g., GPT4), symbolic informalisation
tools such as Naproche [Cramer et al., 2009] result in natural language content that lacks the inherent
diversity and flexibility in expression: they are rigid and not natural-language-like. Finally, symbolic
informalisation tools are hard to design and implement. They also differ a lot for different formal
languages, hence the approach is not scalable for multiple formal languages.

Wu et al. [2022] sought to eliminate altogether the need for a parallel dataset by leveraging the in-
context learning ability of LLMs: they provided a couple of parallel examples, and asked the LLMs to
find a formal counterpart for the informal problem (limited to high-school algebra or number theory).
This approach is very effective when the test domain is limited. But when there are many test domains,
finding the correct parallel examples becomes difficult: the LLM invents syntactically incorrect
segments when it does not know the formal syntax for certain concepts [Wu et al., 2022, Case Study
3]. Liu et al. [2023] and Huang et al. [2024] both utilised autoformalization to create aligned informal-
formal pairs of data that are verified either manually or mechanically (for proofs), but did not perform
large-scale synthesis of corresponding informal-formal theorem statements. Li et al. [2024] provides a
more detailed survey on autoformalization datasets. In summary, there is no existing method, like the
one we propose here, that is scalable both in terms of formal languages and mathematical domains.

Back-translation. In natural language machine translation literature, the quality of translation
heavily depends on the quality of the parallel data between two languages. However, for all but a
few language pairs (e.g., en-fr), such parallel data is rare and hard to curate [Guzmán et al., 2019].
Back-translation is one of the most effective methods to improve translation quality [Sennrich et al.,
2016, Artetxe et al., 2018] in this setting, which is similar to ours. Back-translation uses an existing
target-to-source model to turn ground-truth target sequences into noisy source sequences. Then,
it bootstraps a source-to-target model to reconstruct the ground-truth target from the noisy source.

Usually, the back-translation process is practised in both directions of translation, that is, from
source to target and from target to source, and is iterated until convergence. When back-translation
is practised in one direction only (because the model from target to source is called through an API
and not trainable, for example), this process is referred to as “distilled back-translation”. Azerbayev
et al. [2023] used OpenAI’s Codex [Chen et al., 2021] model to perform distilled back-translation
to improve their own model’s autoformalization capabilities. MMA differs from their dataset mainly
in that MMA contains data from multiple formal languages and has four times as many datapoints.

Language Models for Executable Programs and Reasoning. Since OpenAI’s Codex [Chen et al.,
2021], multiple LLMs have been trained for code completion and infilling that stem from natural
language [Yu et al., 2018, Austin et al., 2021, Fried et al., 2023]. Related is also the research on
natural language mathematical and logical reasoning [Cobbe et al., 2021, Lewkowycz et al., 2022,
Shi et al., 2022] that demonstrates that LLMs can comprehend mathematics and produce reasoning
chains in natural language to a degree. Interestingly, distillation from larger, more capable models
can effectively boost the reasoning ability of smaller models [Fu et al., 2023]. However, none of these
works trained language models for the task of autoformalization, which is the gap that our work fills.

3 Dataset

As established above, there is no existing parallel corpus that satisfies the following crucial criteria
for autoformalization model training:

1. The informal data is diverse and flexible, similar to natural mathematical communication.
2. The size is suitable for neural model training (≥ 100K datapoints).

Informalisation. In this work, we use a powerful neural model (GPT-4) to generate informal data
from existing formal libraries (informalisation) to create a high-quality parallel corpus. We argue,
both analytically and empirically, that informalisation is an easier task than formalisation. Hence,
our approach of leveraging the power and flexibility of language models for informalisation indeed
produces a parallel corpus that satisfies both of the criteria above.
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Formal languages have two vital characteristics that distinguish them from natural languages: (1) pre-
cision and (2) syntactic rigidity. By precision we mean that every piece of information must be
explicitly and precisely expressed and formalised; whereas in natural language, pieces of information
are often left implicit or ambiguous. For example, one may write in natural language "Two roots
of the equation x2 − 3x + 2 = 0, x1 and x2, sum up to 3." meaning the two distinct
roots have a sum of 3. Expressed formally, one must also write x1 ̸= x2 to make the statement prov-
able. Hence, the information in the formal statement is always sufficient for the informal statement to
be inferred, while the reverse is not always true. By syntactic rigidity of formal languages we mean
that formal grammars are usually much stricter than natural grammars, permitting less choice and
diversity when expressing the essence of a piece of information.

Wu et al. [2022] found that 76% of 38 high-school mathematical problems informalised by OpenAI’s
Codex model were “more-or-less correct”. Azerbayev et al. [2023] did a more comprehensive study
on 371 university-level problems and discovered that the same model has a 62.3% informalisation
accuracy, while its formalisation accuracy is 13.4%. Empirically, informalisation has a much higher
chance of being completely correct than formalisation.

Curation Process. Lean4 and Isabelle are two of the most popular proof systems for formalis-
ing mathematics, with by far the largest formal proof repositories: Isabelle’s Archive of Formal
Proofs (AFP) and Lean4’s mathlib4. They total over 5 million lines of code as of May 2024. In this
paper, we consider the languages of these two systems due to their sizes and their popularity within
the mathematical community, although the curation process can be easily extended to other proof
languages as well. In neural translation systems, similar languages tend to have similar performances
as source or target languages [Lample and Conneau, 2019, Roziere et al., 2020]. Given this fact and
cost constraints (see Section 7 for the curation cost), we only use the languages of Lean4 and Isabelle
as target languages in this paper, and expect conclusions reached with them to generalise to similar
proof languages. Lean4 and Isabelle cover a wide range of topics, from advanced mathematics to
software, hardware, and cryptography verification. We use Portal to Isabelle [Jiang et al., 2021]
to extract 244K theorem statements, and the LeanDojo [Yang et al., 2023] library to extract 88K
theorem statements. Isabelle AFP articles are under either a BSD-style license (a modified 3-clause
BSD license) or the GNU LGPL license. Mathlib4 is under an Apache 2.0 license. The derived
informal statements fall under licenses identical to their formal counterparts.

We choose the most generally performant language model available to us, GPT-4 [OpenAI, 2023],
to informalise the statements, since its ability with code and natural language is superior to that of
Codex [Chen et al., 2021], which was used by previous works on autoformalization with LLMs [Wu
et al., 2022, Azerbayev et al., 2023]. Existing works on informalisation [Wu et al., 2022, Azerbayev
et al., 2023] typically use few-shot prompting to generate good informal statements. Our informali-
sation targets all available formalised content, going beyond high-school and undergraduate-level
mathematical exercises. But targeting such a wide range of domains means that acquiring high-quality
parallel pairs for every datapoint is challenging and expensive. Hence, instead of manually curating
aligned pairs for every mathematical domain, we used an instruction prompting approach [Ouyang
et al., 2022], adopting the instruction prompt below for informalisations, with the text in curly
brackets replaced by the individual datapoint content:

Statement in natural language:
{$natural_language_statement}
Translate the statement in natural
language to {Isabelle|Lean}:

For all informalisations, we generated a maximum of 512 tokens from GPT-4 with greedy sam-
pling (i.e., temperature = 0.0 in the OpenAI API). The responses received from this informalisation
process often begin with “The lemma states that”, which is mechanical and does not impact the
meaning of the sentence. We remove such phrases and capitalise the remaining sentence.

Statistics. In Table 2 (top) we give the relevant statistics of our MMA dataset, including the number of
datapoints for each library and the statement lengths in characters for each language.

Analysis. Since formal statements are precise and rooted in exact underlying definitions and complex
contexts, the LLM informalisation process may sometimes fail to capture this precision. It might
overlook or loosen crucial elements of the formal information, or introduce incorrect details (hal-
lucination): this is a limitation of our work. To calibrate the extent of this limitation and further
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Table 2: (top) Statistics of MMA. (bottom) Categorisation of errors in 200 MMA informalisations.
AFP mathlib4

Datapoints 244238 88536

Length (chars) Informal Isabelle Informal Lean4

Mean 340.0 166.0 288.5 107.8
Median 291 125 268 93

Min 95 7 98 21
Max 1546 24331 1258 989

Error type Isabelle Lean4

None 81 67
Hallucination 2 6

Misunderstanding concept 11 18
Incorrect assumption 2 9
Incorrect conclusion 2 6

Incorrect type 4 8

characterise the dataset, we conducted a qualitative study on 200 statement pairs from the MMA dataset,
that we detail below.

We randomly selected 100 Isabelle and 100 Lean4 datapoints from MMA, and manually examined each
pair of informal-formal statements. We rated each pair along the following axes:

• Correctness (whether the informalisation is completely correct)
• Hallucination (whether the informalisation contains content not in the formal statement)
• Misunderstanding concept (taking one concept in the formal statement for a different one)
• Incorrectly translating assumption
• Incorrectly translating conclusion
• Incorrectly translating type

We found that 67 of the 100 Lean statements are informalised correctly, and 81 of the 100 Isabelle
statements are informalised correctly. The overall correctness rate is 74%. We estimate the total
correctness rate of the MMA dataset to be similar. Wu et al. [2022] found that even when only 25.3% of
the autoformalization statements are completely correct, downstream theorem proving applications
were still able to benefit drastically from the parallel dataset. Hence, we expect our MMA dataset,
which is 3x more accurate, to be of great usefulness for the community.

In Table 2 (bottom) we present the types of errors out of the 200 randomly selected informalisa-
tions. Note that one informalisation can potentially have multiple errors. We notice that the most
common mistake made by GPT-4 in informalising is “Misunderstanding concept”, which happens
in 14.5% (29/200) of the translations. This is either because there is an inherent ambiguity in the
formal expression and the context is not enough to determine it, or that the language model is
not able to determine the appropriate concept. Spotting these errors requires a significant amount
of expertise in both mathematics and formal languages. Designing an automatic filter to remove
incorrect informalisations seems to be highly non-trivial. We leave improving the informalising
language model, such that it produces more accurate translations, for future work.

Case Study. We study the informalisation examples from Table 1: 3 of the 4 are correct, but when
informalising the lemma “eint_minus_le”, GPT-4 interprets the type “eint” to be extended integers,
which are usually defined as normal integers extended with negative and positive infinities. This
translation is sensible, but not entirely correct: “eint” is introduced in a theory of p-adic numbers to
represent the codomain for the p-adic valuation – this means that it only extends integers with positive
infinity, which serves as a maximal element in the order (i.e., the valuation of 0). Therefore, it is
important to note that while we use a state-of-the-art LLM (GPT-4) to perform the informalisations,
the resulting MMA dataset is not perfect: rather than the ground truth, informalisations in MMA should
be treated as noisy approximations of it.
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4 Experiment

To validate that MMA is a useful dataset for models to gain autoformalization abilities, we train two
models from the LLaMA family and the Mistral family on a series of MMA data partitions. We
manually evaluate the resulting models on two downstream benchmarks: miniF2F [Zheng et al.,
2022] and ProofNet [Azerbayev et al., 2023], consisting of high-school mathematical competition
and undergraduate-level mathematical exercise problems respectively.

Experimental Details. We take LLaMA [Touvron et al., 2023] 33B (under the LLaMA license)
and Mistral [Jiang et al., 2023a] 7B (under an Apache 2 license) as the base models, for they were
the most performant open-weights model that we could fine-tune at the time of experimenting. We
deliberately choose two models of different sizes and families to show that the improvement brought
by MMA dataset is not sensitive to model size or family. For fine-tuning, we use the cross-entropy
loss with the loss on the input masked out. We use the EasyLM [Geng, 2023] software framework
on a TPUv4-64, with 32 megacores. We parallelise the model across 16 devices, and use a local
batch size of 8 sequences, with each sequence having a maximum of 512 tokens. We use the AdamW
optimiser [Loshchilov and Hutter, 2019], perform 5000 linear warmup steps with a peak learning rate
of 3× 10−5, and then decay the learning rate with a cosine schedule for 35000 steps to 3× 10−6.
Preliminary experiments suggest that the final checkpoints of models are the strongest ones, so we
use those to represent fine-tuning runs.

Fine-tuning Data Regimes. We trained the models for the same number of training steps to generate
formal statements given their informal counterparts, on different partitions of MMA: Isabelle + Lean4;
Isabelle only; Lean4 only. For each datapoint, we used a prompt format identical to the one in
Section 3 but with reversed input/output languages, and instructed the model to translate the statement
in natural language to Isabelle or Lean accordingly. There are 88K informal-formal pairs of Lean4
data in one epoch of MMA, while for Isabelle there are 244K, 3 times as many. To reflect these
proportions fairly, we fine-tuned the jointly trained model for 3.3 epochs, the Isabelle only model
was fine-tuned for 4.4 epochs, and the Lean4 only model was fine-tuned for 13.2 epochs.

It is possible that the ratio between data of the two formal languages influences the models’ perfor-
mances and a sweep of experiments over this ratio is potentially valuable. However, since fine-tuning
the LLaMA model costs $2885 by TPU pricing, we are constrained by our budget and unable to
perform this sweep.

5 Results

In this section, we analyse the performance of the trained models and their formalisation of realistic
mathematical problems from high-school competitions and undergraduate-level courses.

Loss and Accuracy. In Figure 1, we plot the loss and the token accuracy with teacher-forcing [Goyal
et al., 2016] for the LLaMA model, on the Isabelle and the Lean4 validation sets for all 3 models.
That is, we assess whether the ground truth token has the highest likelihood assuming every preceding
token was predicted correctly. The figure illustrates that fine-tuning on MMA with one or both formal
languages can drastically improve the language model’s autoformalization capability, boosting their
final validation token accuracies to above 90%. Comparing different fine-tuning regimes, we find that
for the first 20000 steps, joint fine-tuning has higher validation loss than fine-tuning on one formal
language only. Afterwards, the single-language fine-tuning validation loss starts to increase while
the joint fine-tuning one starts to plateau. At 40000 steps, joint fine-tuning’s validation loss is ∼0.15
lower on the Isabelle validation set and ∼0.1 lower on the Lean4 validation set, respectively. The
joint fine-tuning’s final token accuracy on Isabelle’s validation set is 1% higher than single-language
fine-tuning, and 0.7% lower on Lean4’s validation set. This 0.7% accuracy drop is likely because
the single-language fine-tuning has seen 4 times more Lean4 material than the joint fine-tuning.
We emphasise that the jointly fine-tuned model has seen 3/4 Isabelle and 1/4 Lean4 tokens of the
single-language models, and conclude that fine-tuning with multiple formal languages is much more
data-efficient than with single-formal-language autoformalization data. We note that both loss and
accuracy are proxy metrics of autoformalization capabilities, and in the rest of this section, we will
examine autoformalization metrics that are better proxies, albeit more costly to evaluate.

Syntactic Correctness. In addition to monitoring automated training metrics such as validation
loss and token accuracy, we used each model to formalise problems randomly chosen from two
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Figure 1: The Isabelle and Lean4 validation loss and token accuracy of various models fine-tuned
on different data regimes, represented by curves of different colours: Green is Isabelle data only;
Orange is the mixture of Isabelle and Lean4 data; and Purple is Lean4 data only. Fine-tuning on
both languages yields lower validation loss at the end of the training than fine-tuning on one.

benchmarks: miniF2F [Zheng et al., 2022] and ProofNet [Azerbayev et al., 2023]. miniF2F is a
suite of 488 high-school competition mathematical problems in multiple formal languages, and Jiang
et al. [2023b] collected their ground truth informal counterparts. ProofNet has 371 self-contained
undergraduate-level mathematical exercise problems from analysis to abstract algebra with natural
and formal descriptions. Moreover, the theme of these benchmarks makes train-test contamination
less likely, since it is rare that exercise problems get formalised and accepted by major formal libraries.
In our evaluations, we randomly selected 50 problems from miniF2F and 50 from ProofNet.

We tested if the generated formalisations are syntactically correct by the formal language (if they
“compile”). The base models do not produce anything that compiles in Isabelle or Lean4 on the
two benchmarks we used. The models fine-tuned on Isabelle generate 36% and 30% of Isabelle
statements that compile on miniF2F and ProofNet respectively, while the jointly fine-tuned model
generates 24% and 18% respectively. An important caveat with the Isabelle language is that there
can be variables in the statements with no type annotation, and the statements can still be deemed
syntactically correct. We observed that such statements generated by the model fine-tuned on
Isabelle only are responsible for the high compilation rate, which effectively shows that while the
compilation rate caps the proportion of completely correct formalisations, it does not fully capture
how good/useful the formalisations are. 14% and 6% of the formalisations generated by the model
fine-tuned on Lean4 compile on miniF2F and ProofNet respectively. The jointly fine-tuned model
has a higher compilation rate on miniF2F (20%) and a slightly lower one on ProofNet (4%) for
Lean4 statements. Next, we go into how much assistance the model generations can offer to the
actual formalisation practice on miniF2F and ProofNet benchmarks.

Formalisation Quality. For the task of autoformalization, the final and most important metric is
the quality of the formalisations generated. For each model, we inspect the 100 formalisations for:
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Figure 2: The effort level it takes to correct 100 model-generated formalisations into acceptable
forms in Isabelle (top) and Lean4 (bottom) with LLaMA (left) and Mistral (right). The blue bars
represent the models that are not fine-tuned; the green bars represent models fine-tuned on Isabelle
data only; the purple bars represent models fine-tuned on Lean4 data only; and the orange bars
represent models fine-tuned on both Isabelle and Lean4 data. Generally, the models fine-tuned on
both languages produce outputs that require less effort to correct than models fine-tuned on one.

(1) whether they are completely correct formalisations; and (2) the amount of effort required to correct
the formalisations. Two experts in Isabelle and Lean4 formal languages evaluated the formalisations,
blind to which model generated them. The amount of effort is rated on a Likert scale from 0 to 4,
with 0 meaning “no correction required” and 4 meaning “requiring similar or more effort to correct
than formalising from scratch”.

Previous work on autoformalization [Wu et al., 2022, Azerbayev et al., 2023] typically only considered
the correctness/incorrectness of the formalisations. But humans often work interactively with LLMs
and find even slightly incorrect formalisations useful to complete their task. This suggests that the
evaluation metrics should be more nuanced [Collins et al., 2024]. Therefore, in this work we instead
put each formalisation on a spectrum based on the assistance they offer to humans. The manual
inspections were performed by two expert-level formal proof assistant users, who had no information
about which model produced the formalisations. The evaluations are in the Supplementary Material.

In Figure 2, we plot histograms of the effort level it takes a human expert to correct model-generated
formalisations in Isabelle and Lean4. We define formalisations that have correction effort levels 0
(none) or 1 (trivial) as “acceptable with minimal corrections”. We can see that models not fine-tuned
cannot autoformalize to Isabelle and Lean4 at all: the vast majority of their formalisations require
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Table 3: The average effort levels (lower is better) and their 95% confidence intervals of model-
generated formalisations of the 200 evaluation samples.

Autoformalizing to Isabelle Average effort level 95% confidence interval

Base models 4 [4 - 4]
Fine-tuned on Isabelle 2.785 [2.622 – 2.948]

Fine-tuned on Isabelle + Lean4 2.415 [2.251 – 2.579]

Autoformalizing to Lean4

Base models 3.995 [3.985 – 4.005]
Fine-tuned on Lean4 2.67 [2.501 – 2.839]

Fine-tuned on Isabelle + Lean4 2.495 [2.318 – 2.672]

correction effort similar to or larger than that of formalising from scratch. The models fine-tuned on
Isabelle data or Lean4 data perform significantly better: for the LLaMA models, they generate 6% and
10% of formalisations acceptable with minimal corrections for Isabelle and Lean4, respectively. For
the Mistral models, they generate 20% and 26% of Isabelle and Lean4 statements, respectively, that
are acceptable with minimal corrections. The models fine-tuned on both Isabelle and Lean4 are even
better in terms of assistance provided to human experts. 18% of LLaMA’s Isabelle formalisations and
16% of its Lean4 formalisations are acceptable with minimal corrections, even though the model has
seen fewer Isabelle tokens than the model fine-tuned on Isabelle only, and fewer Lean4 tokens than
the mdoel fine-tuned on Lean4 only. For Mistral, the numbers are 29% and 31%, respectively. This
suggests that there is considerable transfer between data in different formal languages, which
benefits autoformalization, evidenced by the fact that the jointly fine-tuned models have superior
autoformalization abilities in two formal languages with the same computational cost as the models
fine-tuned on zero or one language. We further note that there is a considerable discrepancy between
the direct examination of autoformalization (Figure 2) and the metrics of loss, accuracy, and syntactic
correctness (Figure 1). This highlights the unreliability of the proxy metrics.

Comparison with Few-Shot Prompting. Prior works on autoformalization have made heavy
use of few-shot prompting. Here, we contrast the autoformalization quality of models with few-
shot prompting and fine-tuning. It was found that the Codex model with few-shot prompting can
correctly autoformalize 13-16% of ProofNet theorems [Azerbayev et al., 2023] and 25.3% of
MATH [Hendrycks et al., 2021] theorems (which are much simpler than miniF2F and ProofNet).
Our best autoformalization models with zero-shot fine-tuning can formalise 22% on miniF2F and
12% on ProofNet that require none or trivial corrections (see Figure 2), which are similar or better
than previous models, despite being much smaller (Mistral 7B instead of Codex). We use two
benchmarks purposefully built for autoformalization as per standard, instead of MATH. Therefore,
we think fine-tuning is a promising approach to specialise and improve models for autoformalization.

Statistical Significance. We now investigate whether the improvement in models’ autoformalization
ability with the MMA dataset is statistically significant. In Table 3, we display the average effort
level to correct outputs of models trained on each data mixture, and the 95% confidence interval
estimated based on the 200 (100 from LLaMA and 100 from Mistral) evaluation samples. We see
that for autoformalizing to Isabelle, fine-tuning the models on Isabelle and Lean4 gives outputs that
are strictly better than just Isabelle, since the former has a confidence interval entirely to the left of
the latter. Both are significantly better than the base models. For autoformalizing to Lean4, we see
that fine-tuning with one or two languages on the MMA dataset are both significantly better than not
fine-tuning. Fine-tuning on both languages results in a smaller average effort level to correct Lean4
autoformalization outputs.

6 Discussion and Limitations

Data Contamination. Since the base LLaMA model we chose was pre-trained partially on data from
the internet and GitHub, naturally we need to ask the question: “Has the LLM seen the evaluation
materials during its pre-training phase and therefore the result is invalidated?”. To answer this, we
closely inspected the generations by the raw model and examined if any of them were repeating the
ground truth formalisation. Our investigation found that in none of the cases did the base model
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generate anything resembling the ground truth: most of its generations when instructed to translate a
statement from natural language to Isabelle or Lean4 is either LATEX or Python code. Interestingly,
one of its generations is a LATEX code listing (the complete generation is in Appendix B) that looks
like Isabelle code, but is ultimately not even syntactically correct. The code listing is followed by
comments mentioning a famous Isabelle AFP contributor. We hypothesise that this is caused by
the model having noisily memorised arXiv papers containing Isabelle content. Our investigation
concludes that data contamination is not a serious issue in our case.

Evaluation. Evaluating autoformalization is difficult: language models are very capable of generating
formal statements that are syntactically correct, but do not express the meaning of the informal
statements, as we have seen in Section 5. Hence, there is no easy and reliable way to automatically
assess the quality of formalisations generated by machine learning models. Two fairly reliable
approaches to indirectly assess the quality of the generated formal statements exist: Wu et al. [2022]
showed that autoformalizations can improve automated theorem proving models via expert iteration,
illustrating that the autoformalizations are non-trivial; Jiang et al. [2022] proposed to consider
statements that can be proven and serve as lemmas for other theorems as good formal statements.
However, these approaches require the use of automated theorem proving, which is expensive to set
up. In our work, we manually evaluated formalisations on 100 randomly sampled formalisations for
each of the 12 model-inference language pairs, and analysed the amount of effort needed to correct
the outputs in Section 5. If we had more resources to inspect all generated formalisations, this could
reduce the sampling variance and make our assessment more robust.

Continuously Pretrained Models for Mathematics. There are models that are continuously
pretrained on mathematical materials from base models such as Llemma [Azerbayev et al., 2024]
and DeepSeekMath [Shao et al., 2024]. They demonstrate significant improvements on informal
mathematical problem solving over the base models and can serve as better starting points for fine-
tuning models. We did not experiment with them since they were published after our experiments.

7 Conclusion

In this paper, we constructed MMA, a large, flexible, multi-language, and multi-domain dataset of
informal-formal pairs. We demonstrated that language models can acquire superior autoformalization
abilities by training on MMA, and its use of multiple languages improves sample efficiency and
final performance for autoformalization. We are convinced that MMA can very effectively benefit
the theorem proving and AI for maths community by two facts: (1) the analytical fact that MMA’s
estimated correctness rate is 3 times higher than the parallel autoformalization data used by Wu et al.
[2022] which was very helpful; and (2) the empirical fact that fine-tuning language models on MMA
make them significantly better autoformalization models. We release MMA for public exploration.

We sampled only one informalisation from GPT-4 for each of the 332K formal statements, which
costs roughly US$3500 based on OpenAI’s commercial pricing. If we had more resources, we would
further boost the diversity of the informal statements by sampling more than one informal statement
for each formal statement, and could extend to more formal libraries such as Isabelle’s standard
library, and more languages such as HOL Light and Coq.

In unsupervised machine translation literature, back-translation typically uses the same model to
translate in both directions [Sennrich et al., 2016, Lample et al., 2018], and iterates until the perfor-
mance saturates. We were unable to do this, because GPT-4, the model we used for informalisation
due to its strong performance, is proprietary. The possibility of examining the full potential for
iterated back-translation hinges on the existence of an open-source language model that is generally
performant in both natural and formal languages. Since state-of-the-art open models appear at great
frequency, we leave the work of unifying and iterating language models for informalisation and
autoformalization for the future with great hope.
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A Additional Autoformalization Case Studies

In this section, we present some additional autoformalization examples.

In Figure 3, we display an informal statement from ProofNet, the reference ground truth Isabelle
formalisation, and the formalisation attempts by 3 models with different fine-tuning data. Here we
analyse their autoformalization behaviours. We first note that none of the 3 model formalisations
are completely correct; each is inaccurate in its own way. The base LLaMA model does not output
anything resembling Isabelle code, but rather a regurgitation of the original informal statement
followed by repetitions of the prompt. The model fine-tuned on Isabelle only and the model jointly
fine-tuned on Isabelle and Lean4 both correctly translate the main assertion of the problem, but are
wrong with the assumptions. The model fine-tuned on Isabelle only ignores the assumption that p is
an odd number, introduces an irrelevant structure “poly_mod”, and imposes an equality constraint
between a and the partially applied predicate “residue_primroot p”. The imposed equality causes a
compiling error. The model jointly fine-tuned on Isabelle and Lean4 data does not state the correct
assumptions that p is an odd prime, but gives the lemma a name “let_p_odd_prime” instead. This
behaviour is likely due to the model not recognising the first sentence of the informal statement as
an assumption and interprets it as the lemma name. In this example, both fine-tuned models give
significantly better formalisations than the base model, while the model fine-tuned on multi-language
formal data makes fewer mistakes.

Informal statement:
Let p be an odd prime. Show that a is a primitive root modulo p iff a(p−1)/q ̸≡ 1(p) for all prime
divisors q of p− 1.

Ground truth in Isabelle:
lemma exercise_4_8:

assumes "prime p" "odd p"
shows "residue_primroot p a
←→ (∀ q ∈ prime_factors (p - 1).
[a ^ ((p - 1) div q) ̸= 1] (mod p))"

Base LLaMA model:
Let p be an odd prime. Show that a is a primitive root modulo p iff a(p−1)/q ̸≡ 1(p) for all prime
divisors q of p− 1.
The statement in natural language is a theorem.
The statement in Isabelle is a theorem.
· · ·
The statement in Isabelle is a definition.
The statement in natural language is a lemma.

Fine-tuned on Isabelle only:
lemma (in poly_mod) residue_primroot_iff:

assumes "prime p"
defines "a ≡ residue_primroot p"
shows "residue_primroot p a
←→ (∀ q ∈ prime_factors (p - 1).
[a ^ ((p - 1) div q) ̸= 1] (mod p))"

Fine-tuned on Isabelle + Lean4:
lemma let_p_odd_prime:

shows "residue_primroot p a
←→ (∀ q ∈ prime_factors (p - 1).
[a ^ ((p - 1) div q) ̸= 1] (mod p))"

Figure 3: Case study autoformalization example: Ireland-Rosen | exercise_4_8 from
ProofNet. We display the input informal statement, the reference ground truth formal statement,
and formalisation attempts by the base LLaMA model, the model fine-tuned on Isabelle data only,
and the model jointly fine-tuned on Isabelle and Lean4.
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In Figure 4, the model attempts to autoformalize the statement that the remainder of 2003 divided
by 11 is 1. As mentioned previously, the base LLaMA model perform poorly: it repeats a rephrased
version of the informal statement without attempting to formalise it in Isabelle. The model jointly
fine-tuned on Isabelle and Lean4 finishes the task nicely. Despite not being identical to the ground
truth (e.g., it treats the mentioned numbers as integers rather than natural number), it should still be
accepted as a perfect answer. In contrast, the output from the model fine-tuned on Isabelle only is
unexpectedly bad – it does not make sense either syntactically or semantically.

Informal statement:
What is the remainder when 2003 is divided by 11? Show that it is 1.

Ground truth in Isabelle:
theorem mathd_numbertheory_961:

"2003 mod 11 = (1::nat)"

Base LLaMA model:
"The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.
The remainder of 2003 divided by 11 is 1.

Fine-tuned on Isabelle only:
lemma r_2003 [simp]: "eval r_2003 [e] \<down>= 1"

Fine-tuned on Isabelle + Lean4:
lemma "(2003::int) mod 11 = 1"

Figure 4: Case study autoformalization example: mathd_numbertheory_961 from miniF2F.
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Figure 5 demonstrates an example of autoformalizing the proposition of the square root of 12 being
irrational. The jointly fine-tuned model tackles the task correctly: it uses the predicate is_rat x to
encode the rationality of x, which is totally valid; the ground truth uses an equivalent encoding:
x ∈ Q. Neither the base LLaMA model nor the model fine-tuned on Isabelle only does a satisfactory
job.

Informal statement:
Prove that there is no rational number whose square is 12.

Ground truth in Isabelle:
theorem exercise_1_2: assumes "∃ x ∈ Q. x^2 = 12" shows False

Base LLaMA model:
Theorem square_of_12_is_not_rational:
"(1/x)^2 = 12"
"x = 12"
"x = 1/12"
"x = 1/12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of_one)
"x = 12" by (simp add: square_of_one_divide_by_square_of"

Fine-tuned on Isabelle only:
lemma

"⊢ \<lbrace>\<acute>N = 12\<rbrace> \<acute>N
:= 2 * \<acute>N \<lbrace>\<acute>N = 24\<rbrace>"

Fine-tuned on Isabelle + Lean4:
lemma "¬ (∃ x. is_rat x ∧ x^2 = 12)"

Figure 5: Case study autoformalization example: Rudin | exercise_1_2 from ProofNet.
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In Figure 6, the model is prompted to formally state that 10a ≤ 28a2 + 1 for any real number a.
The jointly fine-tuned model handles the autoformalization task nicely by correctly constraining the
variable a to be a real number using the keyword ‘fixes’. The base LLaMA model rephrases the
informal statement and keeps repeating the prompts. The model fine-tuned on Isabelle only attempts
to formalise this problem using limits in mathematical analysis, which is beyond our comprehension.

Informal statement:
For any real number a, show that 10a ≤ 28a2 + 1.

Ground truth in Isabelle:
theorem algebra_binomnegdiscrineq_10alt28asqp1:

fixes a :: real
shows "10 * a ≤ 28 * a^2 + 1"

Base LLaMA model:
For all a: real, 10 ∗ a <= 28 ∗ a2 + 1
Translate the statement in natural language to Isabelle: For all a : real, 10∗a <= 28∗a2+1
Translate the statement in natural language to Isabelle: For all a : real, 10∗a <= 28∗a2+1.
Translate the statement in natural language to Isabelle: For all a : real, 10∗a <= 28∗a2+1.
· · ·
Translate the statement in natural language to Isabelle: For all a: real

Fine-tuned on Isabelle only:
lemma

fixes a :: real
assumes "a ≥ 1""
shows "(λ n. a powr n / (n * (1 + a powr (2 * n))))

\<longlonglongrightarrow> 1 / (1 + a powr (2 * n))"
"(λ n. (1 + a powr (2 * n)) / n)

\<longlonglongrightarrow> 1 / (1 + a powr (2 * n))"

Fine-tuned on Isabelle + Lean4:
lemma show_10_le_28_pow_2:

fixes a::real
shows "10 * a ≤ 28 * a^2 + 1"

Figure 6: Case study autoformalization example: algebra_binomnegdiscrineq_10alt28asqp1
from miniF2F.
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Figure 7 presents a non-trivial problem in point set topology. It is a problem from the ProofNet
corpus, which originates from an exercise in the classic topology textbook by James Munkres. The
jointly fine-tuned model correctly encodes S1 using the term ‘sphere 0 1’ in Isabelle and manages
to identify the predicate continuous_map to encode the continuity of a function from one set to
another. Nevertheless, it makes a couple of common mistakes, such as neglecting to convert the
open set ‘sphere 0 1’ to a topology and not recognising the inherent Euclidean topology on R. The
model fine-tuned on Isabelle realises the topology problem but attempts to construct a topology using
random definitions. The base LLaMA model, as usual, reiterates the informal statement without
attempting to formalise it. Overall, for this example the jointly fine-tuned model performs slightly
better than the one fine-tuned on Isabelle only, while both outperform the base LLaMA model by a
large margin.

Informal statement:
Let f : S1 → R be a continuous map. Show there exists a point x of S1 such that
f(x) = f(−x).

Ground truth in Isabelle:
theorem exercise_24_2:

fixes f::"’a::metric_space ⇒ real"
assumes "continuous_map (top_of_set (sphere 0 1)) euclidean f"
shows "∃ x ∈ sphere 0 1. f x = f (-x)"

Base LLaMA model:
Let f : S1 → R be a continuous map. Show there exists a point x of S1 such that
f(x) = f(−x). Translate the statement in Isabelle to a mathematical statement: Let
f : S1 → R be a continuous map. Show there exists a point x of S1 such that f(x) = f(−x).
Translate the statement in Isabelle to a mathematical statement in the language of set
theory: Let f : S1 → R be a continuous map. Show there exists a point x of S1 such that
f(x) = f(−x). Translate the statement in the language of set theory to a mathematical
statement in the language of set theory with the axiom of choice: Let f : S1 → R be a
continuous map. Show there exists a point x of S1 such that f(x) = f(−x). Translate the
statement in the language of set theory with

Fine-tuned on Isabelle only:
lemma continuous_map_lemma2:

fixes f :: ""’a::topological_space ⇒ ’b::t2_space""
assumes "continuous_map S

(subtopology (powertop_real UNIV) (standard_simplex p)) f""
shows "∃ x. x ∈ S ∧ f x = f (- x)"

Fine-tuned on Isabelle + Lean4:
lemma continuous_map_sphere_exists:

fixes f :: "’a::real_normed_vector ⇒ ’b::real_normed_vector"
assumes "continuous_map (sphere 0 1) S f"
shows "∃ x. x ∈ S ∧ f x = f(-x)""

Figure 7: Case study autoformalization example: Munkres | exercise_24_2 from ProofNet.
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Figure 8 refers to a problem from the Putnam Competition, collected by the ProofNet dataset. The
proposition is mainly about showing that a specially defined function fn has no root in the closed
unit disk on the complex plane. The jointly fine-tuned model nicely identifies the Isabelle definition
proots_count to count the number of roots of a polynomial within a domain. Nevertheless, it fails to
define the function fn in the informal statement nor correctly encode the unit disk {z ∈ C : |z|′ ≤ 1}.
Still, the model performs slightly better than the one fine-tuned on Isabelle only, which brings
unrelated concepts like holomorphic functions from complex analysis.

Informal statement:
Let n be a positive integer, and let fn(z) = n+ (n− 1)z+ (n− 2)z2 + · · ·+ zn−1. Prove
that fn has no roots in the closed unit disk {z ∈ C : |z| ≤ 1}.

Ground truth in Isabelle:
theorem exercise_2018_b2:

fixes n::nat and f::"nat ⇒ complex ⇒ complex"
assumes "n > 0" "f n z = (

∑
i < n. (n-i)*z^i)"

shows "∀ i > 0. ∀ z. cmod z ≤ 1 −→ f i z ̸= 0"

Base LLaMA model:
Let n be a positive integer, and let fn(z) = n+ (n− 1)z+ (n− 2)z2 + · · ·+ zn−1. Prove
that fn has no roots in the closed unit disk {z ∈ C : |z| ≤ 1}. Translate the statement in
Isabelle to formal language: Let n be a positive integer, and let fn(z) = n + (n − 1)z+
(n− 2)z2 + · · ·+ zn−1. Prove that fn has no roots in the closed unit disk {z ∈ C : |z| ≤ 1}.
Translate the statement in formal language to formal language with quantifiers: Let n be a
positive integer, and let fn(z) = n+ (n− 1)z+ (n− 2)z2 + · · ·+ zn−1. Prove that for all
z ∈ C, if |z| ≤ 1, then fn(z)

Fine-tuned on Isabelle only:
lemma no_proots_in_unit_disc:

fixes f::"complex ⇒ complex" and z::complex
defines "n ≡ zorder f z" and "fn ≡ f n"
assumes "open s" "z ∈ s" "a ∈ s" "f a ̸= 0"
defines "S ≡ {z. z ∈ s ∧ f z ̸= 0}"
defines "I ≡ (λ n. (fn) / (f n))"
shows "(∀ n. (f n) holomorphic_on S) ∧

(∀ n z. z ∈ s ∧ f z ̸= 0
−→ (f n) z ∈ S) ∧
(∀ n z. z ∈ s ∧ f z ̸= 0
−→ (f n) z ̸= a) ∧
(∀ n z. z ∈ s"

Fine-tuned on Isabelle + Lean4:
lemma no_roots_within_let:

fixes n::int
assumes "n>0" and "f ̸= (λ z. n)"
shows "proots_count (f z) {z ∈ R. z ≤ 1} = 0"

Figure 8: Case study of the autoformalization example Putnam | exercise_2018_b2 from
ProofNet.
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B An Attempted Formalisation from the Base LLaMA Model

Informal statement:
Which of the following is the value of

√
log2 6 + log3 6?

(A) 1 (B)
√
log5 6 (C) 2 (D)

√
log2 3 +

√
log3 2 (E)

√
log2 6 +

√
log3 6

Show that it is (D)
√
log2 3 +

√
log3 2.

Attempted formalisation by the base model:
\begin{code}
theory sqrt_log_2_3_6

imports Main
begin

lemma “sqrt(log_2 6 + log_3 6) = sqrt(log_2 3 + log_3 2)”
proof

have “sqrt(log_2 6 + log_3 6) = sqrt(log_2 6 + log_3 6)”
by (simp add: sqrt_def)

also have “sqrt(log_2 6 + log_3 6) = sqrt(log_2 3 + log_3 2)”
by (simp add: log_add_def)

finally show?thesis by simp
qed
end
\end{code}

The above code is not working.

Comment: What is the question?

Comment: @ManuelEberl I have edited the question.

Comment: I don’t understand what you are trying to do. What is the question?

Comment: @ManuelEberl I have edited the question.

Comment: I don’t understand what

21



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction clearly state the claims made in this paper,
and include a list of contributions made in this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6, we discussed aspects of the work that are subject to limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We have no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the full description of the experiments, the code, the dataset used,
and the resulting models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our dataset is open-sourced, as mentioned in Section 1. The code used is from
a public repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We carefully detail these in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the 95% confidence intervals for our main results and analyse
them in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the resources used in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do conform to the code of ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work advances formal mathematics, which has no societal impacts as far
as we can see.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly indicate the licenses for the datasets in Section 3 and the models in
Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The new assets are derivatives of the LLaMA and Mistral models, whose
original documentations apply.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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